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Abstract An oceanic model with an Eulerian vertical coordinate and
an explicit vertical advection scheme is subject to the CFL limitation.
Depending on the horizontal grid spacing, the horizontal-to-vertical grid
resolution ratio, and the flow regime this limitation may easily become
the most restrictive factor in choosing model time step. While terrain-
following models are models of choice for the fine-resolution coastal
modeling, often including tides interacting with topography resulting
in large-amplitude baroclinic vertical motions, using terrain-following
coordinate makes local vertical grid spacing depend on topography, ul-
timately resulting in very fine resolution in shallow areas in comparison
with other models, z-coordinate, and isopycnic, which adds another
factor in restricting time step. In this presentation we examine the pos-
sibility of mitigating vertical CFL restriction, while at the same time
avoiding numerical inaccuracies associated with standard implicit ad-
vection schemes. In doing so we design a combined algorithm which
acts like a high-order explicit scheme when Courant numbers are small
enough to allow explicit method (which is usually the case throughout
the entire modeling domain except just few “hot spots”), while at the
same time has the ability to adjust itself toward implicit scheme should
it became necessary to avoid stability limitations. This is done in a
seamless manner by continuously adjusting weighting between explicit
and implicit components.



Why to use implicit advection?
because it claims to overcome CFL limitation

Why not to use implicit advection?
because it is a gimmick and a lie

• it pretends to approximate terms in the equations without actually
advecting what it is supposed to advect

• no Fourier component is allowed to change phase beyond π in one
time step for any time stepping algorithm

• numerical dispersion is overwhelming in super-Courant regime forc-
ing severe compromises and the necessity to dissipate

• even in sub-Courant regime the accuracy is no match to the best
known explicit advection schemes

• spatial stencils are limited by complexity of implicit procedure; there
are no known unconditionally stable time-stepping algorithms be-
yond second-order Crank-Nicolson (e.g. AM3 is asymptotically un-
stable)

Why to use implicit advection any way?
it is useful in situations when there is nothing left to advect

• it is stratification what fundamentally keeps vertical velocities small
in the ocean; large vertical velocities occur when stratification is
weak, negative, are correlated with strong mixing/convective adjust-
ment events, interaction of tides with topography, tidally-enhanced
mixing, etc.

• oceanic grids are very unisotropic, ∆z � ∆x, so large Courant num-
ber does not necessarily mean physically large vertical velocity

• unlike internal wave phase speeds and horizontal velocities, expected
magnitude of vertical velocity is much harder to predict

• practical ROMS experience shows that starting with ∆x ≤ 10km
resolution vertical Courant number becomes the most restrictive
factor. It is absolutely dominant in high-resolution 3D modeling
involving tides

• vertical Courant numbers tend to be small everywhere, except very
few places and during rare occasions: very few ”bad” grid points
– “hot spots” – hold up simulations by imposing limit on ∆t,
while Courant number remains small elsewhere else



Realistic example: Pacific 0.220 model

Model topography (above);
maximum values over each vertical
column of:
top right – horizontal Courant num-
ber Cx;
right – vertical Courant number Cw
(note stretched colorbar);
Grid resolution is ∆x = 25km →
15km, Equator → north, south;
∆t = 2160s



USWC L4 Palos Verdes configuration, ∆x = 75m

Top – Model topography; maximum values over each vertical column
of: middle – horizontal Courant number Cx; bottom – vertical Courant
number Cw. Grid resolution is ∆x = 75m, 1600 × 600 × 32 points.
Maximum depth within this area is 900m, minimum is only 2m. This
solution of forced by WRF modelled winds (atmospheric model ∆x =
6km) and is tidally forced. Note stretched colobar of Cw – it is actually
very small everywhere except near the tip of PV peninsula.



An enlarged portion of the previous figure.

The sole purpose of adaptive implicitness is to survive
the situations like above.



Explicit and implicit advection at finite Courant numbers

Consider 1D advection

∂tq + c · ∂xq = 0
uniform c = const discretized over uniform grid, ∆x = const.

Flux-form update

qn+1
j = qnj −∆t

[
Fj+1/2 − Fj−1/2

]/
∆x .

Fj+1/2 needs interpolation of q to midpoints in space and proper time
placement in order ensure temporal stability and accuracy of the algo-
rithm – “effectively” at n+ 1/2 to be least second-order.

Spatial: parabolic segment within each cell x ∈ [xj − ∆x/2, xj + ∆x/2].
An option for vertical advection in ROMS is to to compute vertical
interface values by parabolic spline reconstruction. On a uniform grid

1

6
q̃j−1/2 +
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q̃j−3/2 =

qj + qj+1

2

to be solved for all half-integer-indexed q̃j+1/2.

Time placement: use either time-space independent (method of lines,
Hyman, 1979; ROMS LF-AM3 stepping belongs to this class), or
time-space dependent (semi-Lagrangian in conservation form, van Leer,
1979, Colella & Woodward, 1984, Leonard, 1978,88,91).

LF-AM3 step: pre-step

q
n+1/2

j =
(

1

2
− 2γ

)
qn−1
j +

(
1

2
+ 2γ

)
qnj −∆t · c (1− 2γ)

q̃n
j+1/2

− q̃n
j−1/2

∆x

followed by qn+1
j = qnj −∆t · c

q̃
n+1/2

j+1/2
− q̃n+1/2

j−1/2

∆x
γ = 1/12 for 3rd-order temporal accuracy.

Semi-Lagrangian using parabolic reconstruction,

Fj+1/2 = c

[
q̃nj+1/2

−
α

2

(
q̃nj+1/2

− q̃nj−1/2

)
−
(
q̃nj+1/2

+ q̃nj−1/2
− 2qnj

)(3

2
α− α2

)]
where α = c∆t/∆x is Courant number. It has many names, MUSCL,
PPM, QUICKEST, etc...



Fourier component, qnj = λn · q̂k · eik∆xj

Interpolation

q̃j+1/2 = q̂k ·
cos (k∆x/2)

(2/3) + (1/3) cos(k∆x)
· eik∆x(j+1/2)

Flux-differencing

q̃j+1/2 − q̃j−1/2 = q̂k ·
i sin(k∆x)

(2/3) + (1/3) cos(k∆x)
· eik∆xj = iK∆x · q̂k · eik∆xj

Taylor expansion

iK∆x = ik∆x

(
1−

1

180
(k∆x)4 + ...

)
fourth-order accurate. ...but this does not reveal the whole story.

Fourier image K = K (k∆x) of
compact difference operator (bold
curve) vs. that of conventional fi-
nite differences. Diagonal straight
line is “ideal” K (k∆x) = k;
The five thin dashed lines are
for the conventional non-staggered
finite-difference schemes, starting
with the second-order (the lowest
curve), fourth-, sixth-, eighth-, and
tenth-order (the highest). The
maximum K =

√
3 at k∆x = 2π/3

It has many fathers, most notably Kreiss (private communication ac-
knowledged in Orszag and Israeli, 1974 and also in Hirsh, 1975), also
known as Padé scheme and compact differencing.

Replacing flux-difference with iK (k∆x) in LF-AM3 step turns it into

λ2 = 1− α2(K∆x)2 (1− 2γ)− iαK∆x

(
1

2
+ 2γ

)
− iαK∆x

(
1

2
− 2γ

)
λ−1

which yields λ.

Dissipation per 1∆x-travel |λ|(1/α)

Numerical-to-ideal phase speed ratio

λ ≡ |λ| · e∆φ ideally λ(exact) = e−iαk∆x hence
c∗

c(exact)
=

∆φ

αk∆x



LF-AM3 step, |λ|(1/α) c∗/c(exact)

Ideally both |λ|(1/α) and c∗/c(exact) should be uniformly equal to 1. Con-
tour interval is 0.01 in on both panels, however contour values are
selected to be half-way between the integer multiples of the interval,
so |λ|(1/α) ≡ 1 along both axes, α = 0 and k∆x = 0, as well as along
k∆x = π, while the entire area below, left and right from the lowest
contour line (0.995 value) has values between 0.995 and 1 (hence within
0.5% less than the ideal). The white area on the lower-left portion of
c∗/c(exact) has values within the range of 1± 0.005.

Inserting qnj = λn · q̂k... and q̃j+1/2 = q̂k · ... into semi-Lagrangian flux,

and then the outcome into update for qn+1
j = ... yields

λ = 1− iα ·
sin(k∆x)

(2/3) + (1/3) cos(k∆x)
·
[

1−
α2

3

(
1− cos(k∆x)

)]
−α2 ·

1− cos(k∆x)

(2/3) + (1/3) cos(k∆x)
·
[

1−
α

3

(
1− cos(k∆x)

)]
where iK (k∆x) emerges again. Also α = 1 turns it into λ = cos(k∆x)−
i sin(k∆x) which is exact – a typical semi-Lagrangian behavior.

Taylor expansion

λ = 1− iαk∆x− α2(k∆x)2

2
+ iα3(k∆x)3

6︸ ︷︷ ︸
match λ(exact)=e−iαk∆x

+
(
iα

180
− α2

24
− i−6

72
α3
)

(k∆x)4︸ ︷︷ ︸
vs. +α4(k∆x)4

24

+...

where iα
180

acts against “true” iα causing phase delay (an inheritance

of iK (k∆x)), but is not typical dispersion because of (k∆x)4 instead

of (k∆x)3; −α2

24
bends it inward at much higher rate than for would be

purely rotational −1
2

(
α

180
(k∆x)4

)2
, hence dissipative (hyperdiffusive).

However, it is quadratically vanishing – not what is expected from a
semi-Lagrangian scheme: this one does not dissipate when α→ 0.



semi-Lagrangian, |λ|(1/α) c∗/c(exact)

The area free of contour lines on the left portion of both |λ|1/α() and
c∗/c(exact) plots is due to having values very close to 1: in the case
of amplitude the left-most contour is 0.995, while the free area on the
phase speed plot has values within the range of 1±0.005. Because when
α = 1, λ = λ(k∆x, α) becomes exact, the free area is protruded all the
way to the right in both plots along α = 1 line (especially noticeable
on |λ|(1/α)). The absence of contour lines in the upper-right corner of
c∗/c(exact) plot is die to the fact that Im(λ) changes sign from negative to
positive, which means that the phase angle cannot be uniquely defined
on the portion of (k∆x, α) plane zero-contour line of Im(λ), lower-left,
due to π and −π ambiguity. Dashed contours in |λ|(1/α) correspond
to |λ| > 1 – the algorithm is unstable within this area. Stability limit
αmax = 3/2. Dashed contours in phase speed plot indicate slower phase
speeds relative to its exact value, while solid means moving faster. Note
that when α = 1/2 the phase error vanishes identically for all k∆x; also
|λ| = 0 at (k∆x = π, α = 1/2) as it should, while the phase speed is
discontinuous at this point resulting in contraction of contour lines.

Test Problem: advection of a narrow pulse

q(x)

∣∣∣
t=0

=
[

cos
(
π

2
·
x− x0

σ

)]2

where

{
x ∈ [0,1] , ∆x = 1/256

σ = 1/32 , x0 = 3/4

which is only 8∆x-wide as measured at half of its height. Periodic
boundaries on the left and right. The problem is run for one period: the
pulse moves to the right, exits and re-emerges from the left, proceeds
until reaching its initial position. The exact solution is the same as the
initial state.



LF-AM3 step semi-Lagrangian

0.01 0.01

0.1 0.1

0.2 0.2

0.4 0.4

0.5 0.5

0.6 0.6

0.8 0.8

0.9 0.9

0.917 1.0

0.918 1.497

0.919 1.505

Advection a narrow pulse by LF-AM3 (left column) and semi-Lagrangian
(right) algorithms. Bold line is numerical solution, dashed exact. Num-
ber on the left of each panel indicates Courant number, c∆t/∆x.



Implicit advection: Crank-Nicolson stepping

qn+1
j − qnj
∆t

+ c ·
{
θ ·
qn+1
j+1 − q

n+1
j−1

2∆x
+ (1− θ) ·

qnj+1 − q
n
j−1

2∆x

}
step multiplier

λ =
1− α(1− θ) · i sin(k∆x)

1 + αθ · i sin(k∆x)
non-dissipative |λ| ≡ 1 if θ = 1/2

Taylor expansion analysis

λ/λ(exact) = λ/e−ick∆t ≡ λ/e−iαk∆x = +iα
(k∆x)3

6
+ iα3 (k∆x)3

12
+ ...

only second-order in space, dispersive truncation error.

To repair this make a compact version of CN by “spreading” the time
difference along x-direction,

qn+1
j−1 − q

n
j−1

6∆t
+

2

3
·
qn+1
j − qnj
∆t

+
qn+1
j+1 − q

n
j+1

6∆t

+c ·
{
θ
qn+1
j+1 − q

n+1
j−1

2∆x
+ (1− θ)

qnj+1 − q
n
j−1

2∆x

}
its step multiplier

λ =
1− α(1− θ) ·K (k∆x)

1 + αθ ·K (k∆x)

replaces i sin(k∆x) with K (k∆x).

C-N, 2nd-centered, c∗/c(exact) C-N, compact, c∗/c(exact)

Overall major improvement for α� 1; little gain for α beyond 1/2



Alternative: staggered in space, centered around
(
xj − ∆x

2
, tn + ∆t

2

)
qn+1
j − qnj + qn+1

j−1 − q
n
j−1

2∆t
+ c ·

{
θ ·
qn+1
j − qn+1

j−1

∆x
+ (1− θ) ·

qnj − qnj−1

∆x

}
its step multiplier λ =

1
2
− (1− θ) + α

(
1
2

+ (1− θ)
)
e−ik∆x

1
2

+ θ + α
(

1
2
− θ
)
e−ik∆x

unconditionally stable for θ ≥ 1/2

nondissipative, second-order in space-and-time for θ = 1/2

coincidentally exact when α = 1 (must be θ = 1/2 as well)

C-N, 2nd-centered compact in space staggered in space

0.01 0.01 0.01

0.1 0.1 0.1

0.4 0.4 0.4

0.8 0.8 0.8

1.0 1.0 1.0

1.2 1.2 1.2

2.0 2.0 2.0

4.0 4.0 4.0

Advection and dispersive spreading of a narrow pulse by non-dissipative,
unconditionally stable implicit schemes using different Courant number
regimes. Equal-weight θ = 1/2 Crank-Nicolson stepping in all three
cases. Left column centered second-order differencing in space; mid-
dle compact-centered (fourth-order); right staggered in space, centered
around (xj −∆x/2, yn +∆t/2).



For small Courant numbers the middle-column is the most accurate;
α = 1 solution is exact in the right column, this scheme also produces
the least dispersive spreading for α = 2, however, all three schemes
produce virtually the same dispersion for α = 4 and above. Quadratic
variance is maintained to machine accuracy by all three schemes in all
cases.

0.01 0.01 0.01

0.1 0.1 0.1

0.4 0.4 0.4

0.8 0.8 0.8

1.0 1.0 1.0

1.2 1.2 1.2

2.0 2.0 2.0

4.0 4.0 4.0

The same as previous, but for θ = 0.55 in all three cases.

θ > 1/2 makes little influence for small Courant numbers.

θ = 0.55 vs. θ = 1/2 makes virtually no change in dispersive properties,
c∗/c(exact), for the entire k∆x, α-plane for all three schemes.

While for vanishingly small Courant numbers accuracy of an implicit
scheme can be made comparable to explicit presented here, it deterio-
rates too quickly as α departs from there: eg at α = 0.4 C-N with com-
pact differencing is notably more dispersive if θ = 1/2, or more diffusive,
if θ = 0.55 than either LF-AM3 or semi-Lagrangian. In contrast ex-
plicit schemes can be designed to be time-space accurate for the entire
range of their stability. Dissipation in super-Courant regime is needed
to control oscillations, however θ-method is too non-selective: way
too much for α ∼ 0.5 and not enough beyond 1.

Overall direct application of any of these implicit methods does
not seem to be attractive. We therefore need another approach.



Adaptively implicit vertical advection operator:
Vertical fluxes for the tracer or velocity fields are discretized involving
the advected field at n+ 1 time step which are yet unknown,

FCk+1/2 = Wk+1/2 ·Q
(
qn+1
k , qn+1

k±1 , q
n+1/2

k , q
n+1/2

k±1 , ...
)

rearrange by splitting vertical velocity into two parts,

Wk+1/2 = W (e)
k+1/2

+W (i)
k+1/2

, ∀k = 0,1, ..., N

where W (i)
k+1/2

is for terms involving qn+1
k , qn+1

k±1 only (i.e., implicit part),

while W (e)
k+1/2

for the remaining q
n+1/2

k , q
n+1/2

k±1 , ..., then:

• W (e)-terms are computed within r.h.s via standard algorithm

• W (i)-terms are integrated into the vertically implicit operator

Assuming upstream treatment of the implicit part,

FC(i)
k+1/2

= W (i)
k+1/2

·
{

qn+1
k , if W (i)

k+1/2
> 0

qn+1
k+1 , if W (i)

k+1/2
< 0

the combined implicit advection-diffusion system becomes
k = N , uppermost grid box,

Hn+1
N qn+1

N = Hn
Nq

n
N +∆t · rhs′N +∆t · SRFRC −∆tAN−1/2

qn+1
N − qn+1

N−1

∆zN−1/2

+∆t
[
max

(
W (i)
N−1/2

,0
)
qn+1
N−1 + min

(
W (i)
N−1/2

,0
)
qn+1
N

]
k = 2, ..., N − 1

Hn+1
k qn+1

k = Hn
k q

n
k +∆t · rhs′k +∆tAk+1/2

qn+1
k+1 − q

n+1
k

∆zk+1/2

−∆t
[

max
(
W (i)
k+1/2

,0
)
qn+1
k + min

(
W (i)
k+1/2

,0
)
qn+1
k+1

]
−∆tAk−1/2

qn+1
k − qn+1

k−1

∆zk−1/2

+∆t
[

max
(
W (i)
k−1/2

,0
)
qn+1
k−1 + min

(
W (i)
k−1/2

,0
)
qn+1
k

]
k = 1, bottom grid box,

Hn+1
1 qn+1

1 = Hn
1q

n
1 +∆t · rhs′1 +∆tA3/2

qn+1
2 − qn+1

1

∆z3/2

−∆t
[
max

(
W (i)

3/2
,0
)
qn+1

1 + min
(
W (i)

3/2
,0
)
qn+1

2

]



The W -splitting works as follows: Compute Wk+1/2 the standard way;
also compute finite-volume Courant number αi,j,k at every grid box Hk

as the sum of outgoing fluxes normalized by ∆t and grid-box volume,

αi,j,k =
∆t

∆Vi,j,k
·
[

max(FlxUi+1/2,j,k,0)−min(FlxUi−1/2,j,k,0)

+max(FlxVi,j+1/2,k,0)−min(FlxVi,j−1/2,k,0)

+max(Wi,j,k+1/2,0)−min(Wi,j,k−1/2,0)
]

then the explicit part

W (e)
k+1/2

=
Wk+1/2

f(α∗)
, where

{
α∗ = αk if Wk+1/2 > 0

α∗ = αk+1 if Wk+1/2 < 0

and the limiting function

f(α) =


1 , if α ≤ αmin

1 +
(α− αmin)2

4αmax (αmax − αmin)
, if αmin < α < 2αmax − αmin

α/αmax , if α ≥ αmax

made of three segments – constant,
parabolic, and linear – smoothly matched to
each other; αmin control the threshold below
which the algorithm is fully explicit; αmax,
and the maximum allowed Courant number
“never exceed speed” for the explicit part
The implicit part is the “excess” velocity

W (i)
k+1/2

= Wk+1/2 −W
(e)
k+1/2

Selectable αmin and αmax based on consider-
ation of accuracy and numerical stability of
the explicit part.
In the actual code all the above – comput-
ing α = αi,j,k, then f(α) then splitting W is
implanted into the computation of W itself,
so none of the intermediates is stored as a
3D array.



Prime in rhs′k means that the usual r.h.s. computed by ROMS code for

the corresponding equations, except the replacement Wk+1/2 →W (e)
k+1/2

Ak+1/2 is vertical viscosity/diffusion coefficient [including the stabiliza-
tion terms (Lemarié et. al., 2012) in the case when isoneutral lateral
diffusion is used]

The above takes into account kinematic b.c. at surface and bottom,
WN+1/2 = W1/2 = 0, bottom no-flux b.c. for tracers. There is an extra
term for momentum equation associated with bottom drag which also
treated implicitly.

The modified algorithm retains simultaneous conservation and con-
stancy preservation properties for tracers, despite the fact that grid
box heights change due to changing free surface, Hn+1

k 6= Hn
k .

The motivation for using upstream discretization for the implicit part
comes from the fact that it is monotonic, hence will not cause oscilla-
tion. Unavoidably it is diffusive, however this choice is justified by the
observation that in practical model solutions large vertical velocities oc-
cur only in places with vanishing (or even unstable) stratification and,
consequently, already large mixing set by the vertical parameterization
scheme.

Well posed, diagonally dominant discrete system.

Fourier analysis

Modified LF-AM3 stepping: predictor

q
n+1/2

j =
(

1

2
− 2γ

)
qn−1
j +

(
1

2
+ 2γ

)
qnj−iα′ (1− 2γ)

[
q̃nj+1/2

− q̃nj−1/2

]
−iα′′ (1− 2γ)

[
q
n+1/2

j − qn+1/2

j−1

]
followed by

qn+1
j = qnj−iα′

[
q̃
n+1/2

j+1/2
− q̃n+1/2

j−1/2

]
−iα′′

[
qn+1
j − qn+1

j−1

]
where

α =
c∆t

∆x
α′ =

α

f(α)
and α′′ = α− α′

γ = 1/12 for 3rd-order temporal accuracy as usual



Inserting Fourier component qnj = λn · q̂k · eik∆xj

replacing spatial differencing with

{
q̃j+1/2 − q̃j−1/2 = iK∆x · q̂k · eik∆xj

qj − qj−1 =
(

1− e−ik∆x
)
· q̂k · eik∆xj

yields characteristic equation[
1 + α′′

(
1− e−ik∆x

)]
λ = 1− iα′K∆x ·

(
1
2

+ 2γ
)
−iα′K∆x (1− 2γ)

1 + α′′ (1− e−ik∆x) (1− 2γ)

−iα′K∆x ·

(
1
2
− 2γ

)
1 + α′′ (1− e−ik∆x) (1− 2γ)

· λ−1

which can be made unconditionally stable by parameter choice in
limiter function f(α). Note that if [1 + α′′...] → 1 the above reverts
back to the original LF-AM3 characteristic equation.

LF-AM3-Adaptive, |λ|(1/α) c∗/c(exact)

αmin = 0.6, αmax = 1.0

cf., Fully-Implicit, |λ|(1/α) c∗/c(exact)

αmin, αmax → 0 ⇒ backward-Euler, upstream in space



For 0 < α ≤ αmin the algorithm is identical to the original LF-AM3.
For α → ∞ it asymptotes to fully implicit. Smooth transition over a
wide zone; LF-AM3 phase acceleration toward its stability limit helps.

Original LF-AM3
time stepping

Adaptively implicit
Backward Euler,
upstream in space

0.1 0.1 0.1

0.4 0.4 0.4

0.5 0.5 0.5

0.6 0.6 0.6

0.7 0.7 0.7

0.8 0.8 0.8

0.9 0.9 0.9

1.0 1.0

1.5 1.5

2.0 2.0

3.0 3.0

4.0 4.0

Comparison of LF-AM3 algorithm (left column, adaptively implicit (mid-
dle column, threshold Courant numbers settings αmin = 0.6, αmax =
1.0), and fully-implicit backward Euler upstream in space advection
(right column). Number on the left of each panel indicates Courant
number.



Test problem: Gravitational adjustment a.k.a. “lock-exchange”.
Same setup as in Ilıcak et. al. (2012). Also a standard ROMS test
problem, Haidvogel & Beckmann (1990). Inspired by Benjamin (1968)
classical work. Known for generating sharp fronts with the resulting
vertical velocities playing the dominant factor in CFL limitation.

Explicit vertical
advection

Adaptively implicit Fully implicit

∆
t=

1
0

∆
t=

2
0

∆
t=

4
5

∆
t=

6
0

∆t=90 no solution

∆t=120 -

∆t=180 -

∆t=240 -

∆t=360 -

∆t=510 -

The solution (vertical along-channel xz cross-section of temperature
field) is shown at 17 hours since initialization (matches Fig. 2 and Fig.
5 from Ilıcak et. al., 2012). The length of the domain is 64km, depth is
20m, grid resolution ∆x = 400m, ∆z = 0.5m. Aspect ratios ∆z/∆x =
1/800� 1 and h/∆x = 1/20� 1 so this grid does admit nonhydrostatic
effects. Unlike Ilıcak who selected Smolarkiewicz scheme (the best fit
for this particular problem, but is too diffusive for realistic long-term



simulations), we use a third-order upstream scheme in the horizontal,
and parabolic splines in vertical (for the explicit part). They also their
tests with ∆t = 1s resulting in vanishingly small CFL, while our goal
here is to push it to the limit. Note the progressive delay in the front
propagation for the largest ∆t – neither adaptive, nor fully implicit
scheme is expected to be accurate at this regime (∆t = 240...510s),
but still adaptive shows slightly less delay and less mixing.

Conclusion
• Accurate representation of physical processes require resolving

them in time: there is no way around it, no miracles.

• Explicit advection algorithm can be designed in such a way that using
it close to the largest possible time step allowed by their numerical
stability does not compromise the accuracy of the solution.

• Implicit can not. ...at least not the classical θ-method at α ≈ 1/2.

• ROMS has actually a lot to loose...

• Adaptive implicit advection is designed as extension to the
explicit.

• Accuracy of the explicit part of algorithm within the useful portion
of its stability range is fully retained – there is no compromise
whatsoever.

• Implicitness activates itself only where and when it is absolutely
necessarily.

• Seamless transition from fully explicit to partially implicit to more
implicit.

• Deliberately designed to dissipate what is not resolved by time
step.

• No more blow ups because of vertical over-speeding.

• Use wisely: Courant number is 3D Courant number for the purpose
of adaptive control, as is dictated by the overall budget of numeri-
cal stability. This means that the explicitness available for vertical
direction is what left after been “taxed” by horizontal advection.

• Fits into existing code infrastructure: Modifies computation of W ,
implicit vertical solvers, and adds implicit solver into ROMS predictor
sub-step. very mild increase in overall computational cost.


