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Abstract13

An oceanic model with an Eulerian vertical coordinate and an explicit vertical advection14

scheme is subject to the Courant–Friedrichs–Lewy (CFL) limitation. Depending on the hor-15

izontal grid spacing, the horizontal-to-vertical grid resolution ratio and the flow pattern this16

limitation may easily become the most restrictive factor in choosing model time step, with17

the general tendency to become more severe as horizontal resolution becomes finer. Us-18

ing terrain-following coordinate makes local vertical grid spacing depend on topography,19

ultimately resulting in very fine resolution in shallow areas in comparison with other mod-20

els, z-coordinate, and isopycnic, which adds another factor in restricting time step. At the21

same time, terrain-following models are models of choice for the fine-resolution coastal22

modeling, often including tides interacting with topography resulting in large amplitude23

baroclinic vertical motions. In this article we examine the possibility of mitigating vertical24

CFL restriction, while at the same time avoiding numerical inaccuracies associated with25

standard implicit advection schemes. In doing so we design a combined algorithm which26

acts like a high-order explicit scheme when Courant numbers are small enough to allow27

explicit method (which is usually the case throughout the entire modeling domain except28

just few “hot spots”), while at the same time has the ability to adjust itself toward implicit29

scheme should it became necessary to avoid stability limitations. This is done in a seamless30

manner by continuously adjusting weighting between explicit and implicit components.31

1 Introduction32

Selecting the size of time step∆t in oceanic modeling requires to satisfy multiple criteria associated33

with different physical processes in order to guarantee numerical stability (cf., Griffies and Adcroft,34
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2008, esp. Sec. 8.4 and Table 1 there). For large-scale, coarse-resolution ∆x ∼ O(50...100km) mod-35

eling inertial CFL, f∆t, is usually found to be the most restrictive limiting the time step not to exceed36

7200...8600sec (cf., Table 1 in Shchepetkin and McWilliams, 2005, hereafter cited as SM2005). A37

finer ∆x ∼ O(10...50km) resolution requires using smaller ∆t due to CFL based on maximum prop-38

agation speed of internal waves, c1∆t/∆x, where c1 is the phase speed of the first baroclinic mode,39

and CFL based on horizontal advection speed, |u|∆t/∆x. These two criteria act in a mutually additive40

manner (rather than independently), meaning that the phase speed should be added current velocity,41

intuitively 1 as (|u| + c1)∆t/∆x, and in they lead to a proportional decrease of time step with hor-42

izontal grid spacing, ∆t ∼ ∆x, while in practice a slightly faster decrease is typically required due43

to the increase of maximum advection speed as the simulated flow becomes more energetic with grid44

refinement. Vertical mixing processes are treated using an implicit algorithm and impose no additional45

restriction on time step. Neither does the barotropic mode, which is solved separately by an implicit46

or split-explicit method. Because at such resolutions the depth-to-horizontal grid size ratio is small,47

h/∆x < 1, the finiteness of grid resolution removes the possibility of non-hydrostatic motions. In48

a hydrostatic model vertical velocity exists only as finite-volume flux integrated over grid-box area49

as seen from above, hence is effectively averaged tens of km2, this naturally leading to very small50

numbers.51

This situation changes with further refinement of horizontal grid. In fact, practical experience with52

simulations with horizontal resolution less than a few km reveals that limitation due to CFL associ-53

ated with vertical advection w∆t/∆z gradually becomes the most restrictive one, depending on the54

topographic features and/or whether or not the tides are part of the simulation. For sub-1km grids it55

becomes so dominant that the imposed time step limitation is several times smaller than due to horizon-56

tal advection and/or internal wave phase speeds. This takes place even when the relevant vertical-to-57

horizontal aspect ratios and vertical accelerations (diagnosed from the actual solutions) are sufficiently58

small to cast doubt about validity of hydrostatic approximation. In part it is because ∆z/∆x � 1, so59

while vertical velocity is small, in comparison with horizontal vertical CFL may be not be so.60

Detailed investigation of the associated “hot spots” (characteristic locations on the model grid61

where numerical instability of the explicit code occurs first ) reveals that large vertical CFL always62

occur near topographic features, where buoyancy stratification is weak or vanishing, but not neces-63

sarily in the shallowest areas where vertical grid spacing is the smallest due to topography-following64

coordinate. The causes for more restrictive vertical CFL at higher horizontal resolutions can be identi-65

fied as follows66

(i) the prevailing pattern in vertical velocity field are narrow upwelling or downwelling contours67

along the propagating fronts in temperature, salinity, or vorticity fields. Refinement of horizontal68

resolution causes sharpening of these fronts, however the integral uplifting or downwelling of69

water must balance the horizontal divergence, resulting in scaling of amplitude of vertical velocity70

as w ∼ 1/∆x;71

(ii) with finer resolution bottom topography is subject to lesser smoothing resulting in larger absolute72

slopes, which translate into larger vertical velocities, as well as capturing phenomena such as73

1 It should be noted that in anticipation that the baroclinic wave phase speed is typically larger than the max-
imum advection speed, modern ocean modeling codes may take the advantage of using a variation of forward-
backward stepping for tracer and momentum equation resulting in a larger theoretical stability limit for waves
than for advection, so the summation in |u|+c1 should be replaced with a weighted sum to take this into account.
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topographic refraction and focusing on internal waves;74

(iii) vertical mixing parameterization schemes have tendency to set off unbalanced states by rapidly75

mixing negative stratification throughout some vertical columns;76

(iv) bringing in new physical processes: high-resolution modeling tends to be accompanied with tidal77

forcing, which, in combination with bottom topography and stratification results large-amplitude78

baroclinic motions.79

While implicit advection schemes offer a relief from CFL limitation, their drawbacks are well80

known: unavoidable and potentially large dispersive errors increasing with CFL, and depending on81

the detail of time and space discretization, large numerical viscosity as well (cf., Shchepetkin and82

McWilliams (2009)). In contrast, the explicit vertical advection schemes of ROMS are designed to be83

high order in space (4th-centered or compact based parabolic spline fits), which makes it not feasible84

to design an implicit version of comparable accuracy.85

To overcome the dilemma in this article we pursue an adaptive approach where the advection86

scheme remains explicit (as in the original code) everywhere except where/when local vertical ve-87

locities exceed a threshold close to (but below) the explicit stability limit. Once this happens, a gradual88

transition toward an implicit scheme begins via Courant-number-dependent weighting algorithm. As89

we are not aware of any prototype of such approach published in the literature, we present it in full90

detail.91

2 Explicit and implicit advection at finite-Courant-numbers92

Vertical advection in oceanic modeling poses specific requirements to avoid long-term accumula-93

tion of numerical errors in tracer fields due to oscillatory vertical motions typical for ocean dynamics,94

which in its turn makes the choice of advection schemes for vertical direction distinct in its priorities95

from the algorithms used elsewhere. Thus, upstream biasing is generally avoided for the dynamically96

active tracers, temperature and salinity: preserving monotonicity becomes a lesser priority over “re-97

versibility” of dispersive errors – ability not to erode thermocline in repeated up-and-down motions.98

This consideration may be reversed for the other tracers (turbulent kinetic energy, biological, etc..),99

where maintaining positivity becomes a higher priority, and monotonicity limiters require that the100

overall advection algorithm is two-time-level, logically forward-in-time, which unavoidably makes it101

time-space-dependent (hence upstream-biased) for the numerical stability. Another constraint is that102

the overall time stepping algorithm (including momentum equations and advection of active tracers)103

must be stable with respect to baroclinic internal waves, Rueda et al. (2007), who showed that while104

forward-in-time advection can be made stable by upstream-biasing if advection is considered alone,105

upstream-bias by itself does not help to stabilize the mechanism of mutual feedback between momen-106

tum and tracer equations which is associated with propagation of internal waves. In any case, leaving107

dispersive errors unchecked is also not acceptable: in a realistic oceanic code dispersive overshoots are108

detected as negative stratification by vertical mixing parameterization algorithm triggering enhanced109

mixing, resulting to overall stable, but non-physical solution, e.g., Hecht (2010). Similarly, overshoots110

caused by an explicit scheme in the regime marginally beyond its limit of stability due to vertical111

over-speeding may be viewed as negative stratification, hence triggering enhanced mixing by vertical112

mixing parameterization scheme and for this reason may not lead to computational instability right a113

way, however, once again, resulting in artifacts.114
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In this section we overview properties of known advection schemes focusing on their behavior over115

the entire range of Courant numbers within the limit of stability.116

2.1 Explicit advection117

Consider for simplicity one-dimensional advection118

∂tq + c · ∂xq = 0 (2.1)119

with uniform velocity c = const discretized on a uniformly-spaced grid
{
xj
∣∣∣j = 1, .., N

}
, ∆x =120

xj+1 − xj = const. A flux-form algorithm updates qj as121

qn+1
j = qnj −∆t

[
Fj+1/2 − Fj−1/2

] /
∆x . (2.2)122

Computation of fluxes Fj+1/2 involves interpolation of field q in space as well as proper time placement123

in order ensure temporal stability and accuracy of the algorithm – note that thus far the time index of124

Fj+1/2 in (2.2) above is undefined – it should be “effectively” centered at n + 1/2 to ensure numerical125

stability and at least second-order accuracy.126

For the spatial interpolation we assume that within each cell x′ ∈ [xj−∆x/2, xj +∆x/2] the distribu-127

tion of q = q(x′) is approximated by a parabolic segment such that its averaged value within the cell j128

is equal to the given value qj while the left- and right-side limits q̃Lj and q̃Rj are computed from the set129

of {qj} by an appropriate reconstruction algorithm,130

q(x′) = qj +
q̃Rj − q̃Lj
∆x

x′ + 3
q̃Rj − 2qj + q̃Lj

∆x2

(
x′

2 − ∆x2

12

)
, (2.3)131

where it can be verified that q
∣∣∣
x′→+∆x/2

→ q̃Rj , q
∣∣∣
x′→−∆x/2

→ q̃Lj , and
1

∆x

∫ +∆x/2

−∆x/2
q(x′) dx′ = qj .132

The reconstructed profile may yield either continuous or discontinuous at the grid-box interfaces, either133

q̃Rj = q̃Lj+1 or q̃Rj 6= q̃Lj+1, depending on the specifics of the reconstruction algorithm, the degree of134

smoothness of field q on the grid scale, and whether or not enforcement of monotitonicity is desired.135

In the continuous case it is convenient to introduce the “shared” values q̃j+1/2 at each interface,136

q̃Rj = q̃j+1/2 = q̃Lj+1 . (2.4)137

One of the options for vertical advection in ROMS is to compute vertical interface values by parabolic138

spline reconstruction. Initially motivated by its ability to work on highly stretched vertical grids with-139

out loss of accuracy, it is also known for a much smaller numerical dispersion relatively to other140

schemes of formally the same order of accuracy. Some other, more traditional algorithms are described141

Appendix A. On a uniform grid parabolic spline reconstruction leads to142

1

6
q̃j−1/2 +

2

3
q̃j+1/2 +

1

6
q̃j+3/2 =

qj + qj+1

2
(2.5)143

which needs to be solved for all half-integer-indexed q̃j+1/2 simultaneously.144

As for the time placement of q̃j+1/2 in Fj+1/2, there are fundamentally two different approaches:145

either to use a suitable time stepping algorithm independent of spatial discretization (so called method146
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of lines, Hyman, 1979), or, conversely, use a variant of tracking the advected field back in time along147

the characteristics in time-space, leading to a semi-Lagrangian approach in conservation form (van148

Leer, 1979; Colella and Woodward, 1984; Leonard, 1991). An example of the former is LF-AM3149

predictor corrector stepping,150

q
n+1/2
j =

(
1

2
− 2γ

)
qn−1
j +

(
1

2
+ 2γ

)
qnj −∆t · c (1− 2γ)

[
q̃nj+1/2 − q̃nj−1/2

] /
∆x (2.6)151

followed by152

qn+1
j = qnj −∆t · c

[
q̃
n+1/2
j+1/2 − q̃

n+1/2
j−1/2

] /
∆x , (2.7)153

where during both stages Fj+1/2 ≡ cq̃j+1/2 for the respective time indices; γ = 1/12 leads to the154

third-order temporal accuracy.155

In the case of a semi-Lagrangian algorithm based on parabolic reconstruction,156

Fj+1/2 = c
{
q̃Rj
∣∣∣n − α

2

[
q̃Rj
∣∣∣n − q̃Lj

∣∣∣n + (3− 2α)
(
q̃Rj
∣∣∣n + q̃Lj

∣∣∣n − 2qnj
)]}

, (2.8)157

where α = |c|∆t/∆x is Courant number. The above is derived by integrating the parabolic segment158

(2.3) over the interval [xj+1/2−α∆x, xj+1/2] assuming that the flow direction is from left to right, hence159

c is positive 2 . In the case of negative c the integration interval becomes [xj+1/2, xj+1/2 + |α| ·∆x], so160

the resultant Fj+1/2 involves qnj+1, q̃Lj+1

∣∣∣n, q̃Rj+1

∣∣∣n instead of qnj , q̃Rj
∣∣∣n q̃Lj ∣∣∣n respectively. Note that left-161

and right-side limits switch their roles; α inside brackets in (2.8) depends on absolute value advecting162

velocity, so it is always positive. In the case of continuous reconstruction the side limits q̃R and q̃L are163

replaced with interface values q̃j+1/2 with appropriate spatial indices according to (2.4).164

To investigate accuracy of the above algorithms we consider a Fourier component,165

qnj = λn · q̂k · eik∆xj (2.9)166

where q̂k is a Fourier amplitude of wavenumber k and λ is step multiplier, which ideally for the “exact”167

solution should be λ = e−ick∆t = e−iαk∆x. It is worth to note that in Taylor expansion of168

λ(exact) = 1− iαk∆x− α2 (k∆x)2

2
+
iα3 (k∆x)3

6
+
α4 (k∆x)4

24
− ... (2.10)169

all α and k∆x appear together in equal powers.170

By substituting (2.9) into (2.5) we find171

q̃j+1/2 = q̂k ·
cos (k∆x/2)

(2/3) + (1/3) cos(k∆x)
· eik∆x(j+1/2) (2.11)172

2 This derivation appears in multiple sources, most notably Colella and Woodward (1984, see Sec. 1, esp. Eqs.
(1.11)-(1.13)), but can be traced back to earlier work of van Leer (1979, Appendix B, esp. Eq. (B5)); Leonard
(1979, Sec. 4, QUICKEST method). In the case of 1D advection in by uniform velocity c the overall scheme
can be shown to be equivalent to interpolation of the field itself, Leonard (1988). In fact, under such condition
substitution of (2.8) into (2.2) and taking into account (2.5) can be shown to be in equivalent to finding qn+1

j as
the result of cubic spline interpolation of field qn to the location x = xj − α∆x.
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therefore173

q̃j+1/2 − q̃j−1/2 = q̂k ·
i sin(k∆x)

(2/3) + (1/3) cos(k∆x)
· eik∆xj = iK∆x · q̂k · eik∆xj (2.12)174

where K = K (k∆x) is the Fourier image of the finite-difference operator in (2.2) used in combina-175

tion with (2.5). Its Taylor expansion176

iK∆x = ik∆x
(

1− 1

180
(k∆x)4 + ...

)
(2.13)177

reveals that it is fourth-order accurate. Furthermore, its leading-order (k∆x)4 truncation term is six178

times smaller than that of the conventional non-staggered fourth-order finite difference. Overall it has

Fig. 1. Comparison of Fourier image of compact differ-
ence operator (2.2)-(2.5) with similar images of conven-
tional finite differences. Thin dashed straight diagonal
line corresponds to the “ideal” K (k∆x) = k. The five
thin dashed lines are for the conventional non-staggered
finite-difference schemes, starting with the second-order
(the lowest curve), then fourth-, sixth-, eighth-, and ten-
th-order (the highest). Superimposed bold solid curve
is for K = K (k∆x) via Eq. (2.12). While formally
fourth-order accurate, it is most similar to eighth-order
difference in effective resolution. It reaches the maxi-
mum value of K∆x =

√
3 at k∆x = 2π/3.

179

a significantly wider range of wavenumbers for which the derivative is accurately computed 3 , Fig. 1.180

Inserting (2.12) into (2.6)-(2.7) and combining the two equations into one, we find the characteristic181

equation of LF-AM3 advection algorithm,182

λ2 −
[
1− α2(K∆x)2 (1− 2γ)− iαK∆x

(
1

2
+ 2γ

)]
λ+ iαK∆x

(
1

2
− 2γ

)
= 0 , (2.14)183

3 The fact that replacing polynomial interpolation to compute mid-point values by an implicit relation (2.5)
results in a much more accurate approximation for the first derivative at co-located points (hence on a non-
staggered grid) was noticed by Kreiss, who pioneered compact fourth-order differencing (private communica-
tion acknowledged in Orszag and Israeli, 1974 and also Hirsh, 1975). Eq. (2.5) combined with differencing
(2.2) can be algebraically transformed into a tri-diagonal system for the first derivatives as co-located points,
dj = ∂xq

∣∣
x=xj

, which is also known as classical Padé scheme. This terminology comes from the analogy
with rational function approximation when symbolically writing the compact fourth-order finite-difference op-
erator in form ∂/∂x ≈ Dc/

[
1 + (1/6)∆x2D+D−

]
where Dcf = (fj+1 − fj−1)/(2∆x) is centered-, while

D−f = (fj − fj−1)/∆x and D+f = (fj+1 − fj)/∆x are left- and right-sided divided differences, cf., Eq.
(12) from Orszag and Israeli (1974). In the same notation the conventional fourth-order differencing is written
as ∂/∂x ≈ Dc

[
1− (1/6)∆x2D+D−

]
as it appears in Eq. (11) from the same source. “Division” by finite

difference operator implies inversion of an implicit system. Naturally, its Fourier analysis leads to rational func-
tions like (2.12), instead of than polynomials in powers of sin(k∆x) and cos(k∆x). Compact differencing is
mathematically related to spline interpolation, De Boor (1978), and can be extended to arbitrarily high order of
accuracy, Lele (1992).
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which leads to λ = λ(αK∆x) as a single variable function (the larger by amplitude root corresponds184

to the physical mode, the smaller to the computational), so Taylor expansion of λ keeps terms with185

equal powers of α and K∆x together, and because iK∆x matches ik∆x up to (k∆x)4-term, Taylor186

expansion of (2.14) in terms of powers of α and k∆x also keeps their powers together, similarly to187

(2.10), for up to (including) the third power. This means that the overall time-space order of accuracy188

of this algorithm is the third if γ = 1/12 simply because the order of accuracy of LF-AM3 stepping is189

that. Fig. 2 investigates properties of (2.14) in further detail.190

Besides showing real and imaginary parts of λ, we introduce two other metrics: dissipation per191

1∆x travel192

|λ|(1/α) (2.15)193

which is more informative than just absolute value of |λ| because it accounts for the fact that using a194

smaller time step (hence smaller Courant number α) requires more steps to cover the same distance;195

and numerical-to-ideal phase speed ratio,196

since λ ≡ |λ| · e∆φ while ideally λ(exact) = e−iαk∆x hence
c∗

c(exact)
=

∆φ

αk∆x
. (2.16)197

It is worth to note that despite having an apparent singularity when α → 0, dissipation measure198

|λ|(1/α) is still finite and continuous. Indeed, any consistent discretization should yield lim
α→0
|λ| = 1,199

which means that asymptotically |λ| ∼ 1 − βαm as α→ 0 where β is some coefficient and power m200

depends on the order of accuracy. Then one can expand201

|λ|(1/α) = (1− βαm)(1/α) = exp
{

ln
[
(1− βαm)(1/α)

]}
= exp

{
1

α
ln (1− βαm)

}

= exp
{
−βαm−1 + O

(
β2α2m−1

)}↗
↘

1− βαm−1 + O (β2α2m−2) , if m ≥ 2

exp{−β} , if m = 1

(2.17)202

which means that lim
α→0
|λ|(1/α) = 1 as long as m ≥ 2. Such schemes are expected to be nondissipative203

in the limit of vanishingly small Courant number. Conversely m = 1 results in finite dissipation per204

1∆x travel independently from α as long as α is sufficiently small.205

The two bottom panels reveal that the algorithm has purely dispersive error at small Courant num-206

bers: note that isolines of c∗/c(exact) became vertical when approaching α = 0 axis, which means that207

phase speed is independent from α for α � 1. The dissipation is quadratically small in α when α208

is small. Increase of Courant number leads to the increase of dissipation and slight increase of phase209

speed over the entire range of wavenumbers – this is due to the LF-AM3 stepping irrespective from210

the particular spatial difference scheme as long as it is symmetric (not upstream-biased). Fourier com-211

ponents in the vicinity of k∆x = π are neither dissipated, nor move. Consistently with Fig. 1, the212

largest phase increments are for wavenumbers in the vicinity of k∆x = 2π/3. The stability limit is213

αmax = 1.5874/
√

3 ≈ 0.917.214

Similarly, for the semi-Lagrangian algorithm (2.2), (2.5), (2.8) inserting (2.11) into (2.8) and sub-215
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Re(λ)

|λ|(1/α)

Im(λ)

c∗/c(exact)

Fig. 2. Real (upper left panel), imaginary (upper right) parts of step multiplier λ, amplitude multiplier normal-
ized per 1∆x travel |λ|(1/α) (lower left), and numerical to “ideal” phase speed ratio (lower right) for LF-AM3
advection algorithm (2.6)-(2.7) plotted as functions of normalized wavenumber k∆x and Courant number α.
Ideally both |λ|(1/α) and c∗/c(exact) should be uniformly equal to 1. Note that these two panels use non-uniform
contour interval to allow very fine resolution in the vicinity of 1, while avoiding cluttering elsewhere (see Fig.
3). Thus, the contour interval is only 0.002 for values close to 1 (within the range of 0.995 to 1.005) however
contour levels are selected to skip the exact value 1 half-way in between. Hence, as |λ|(1/α) ≡ 1 along both
axes, α = 0 and k∆x = 0, as well as along k∆x = π, the entire area below, left, and right from the lowest
contour line (0.999 value) has values between 0.999 and 1 (that is within only 0.1% less than the ideal). Dashed
contours in the amplitude plot corresponds |λ| > 1, which means that the algorithm is unstable within this area.
Similarly, the contour-free area on the left and lower-left portion of c∗/c(exact) has values within the range of
1 ± 0.001. Dashed contours in phase speed plot indicate slower phase speeds relative to its exact value, while
solid indicate moving faster.

Fig. 3. Explanation of the nonuniform contour interval in |λ|1/α and
c∗/c(exact) panels in Fig. 2. The lower portion shows placement of the
selected contour levels in linear scale ranging from 0 to 1.5. Every fifth
contour uses bold line and has a label. The interval is uniform between
the labelled contours, but is allowed to change from one labelled line
to the next by a factor of 2, 2.5, or 2.4 to allow refinement in the vicin-
ity of c∗/c(exact) ≈ 1. The upper portion is the vicinity of 1 magnified
by a factor of 10. All c∗/c(exact) panels in all figures throughout this
article use the set of contour levels exactly as on the left. All |λ|(1/α)

panels use only the portion between 0 and 1 from this set, while above
1 (i.e., in the unstable zone) the interval is 0.1 uniformly.

stituting the outcome into (2.2) yields its step multiplier,216

λ = 1− iα · sin(k∆x)

(2/3) + (1/3) cos(k∆x)
·
[
1− α2

3

(
1− cos(k∆x)

)]

−α2 · 1− cos(k∆x)

(2/3) + (1/3) cos(k∆x)
·
[
1− α

3

(
1− cos(k∆x)

)]
.

(2.18)217
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The behavior of (2.18) is very complex and is studied in Fig. 4. At first, we note that substitution of

Re(λ)

|λ|(1/α)

Im(λ)

c∗/c(exact)

Fig. 4. Same as Fig. 2, but for semi-Lagrangian algorithm (2.2)-(2.8). The area free of contour lines on the left
portion of |λ| and c∗/c(exact) plots is due to having values very close to 1: in the case of amplitude the left-most
contour is 0.999, while the free area on the phase speed plot has values within the range of 1± 0.001. Because
when α = 1, λ = λ(k∆x, α) given by Eq. (2.18) becomes exact, the free area is protruded all the way to
the right in both plots along α = 1 line (especially noticeable on |λ|(1/α)). The absence of contour lines in
the upper-right corner of c∗/c(exact) plot is die to the fact that Im(λ) changes sign from negative to positive,
which means that the phase angle cannot be uniquely defined on the portion of (k∆x, α) plane zero-contour
line of Im(λ), lower-left, due to π and −π ambiguity. Note that the stability limit for this algorithm αmax = 3/2.
Also note that when α = 1/2 the phase error vanishes identically for all k∆x; the amplitude is equal to zero at
(k∆x = π, α = 1/2) (as it should) while the phase speed is discontinuous at this point resulting in contraction
of contour lines there.

218

α = 1 into the above leads to λ = −i sin(k∆x) + cos(k∆x) = eik∆x which is the exact value. This is219

expected, because substituting α = 1 into (2.8) turns it into Fj+1/2 = cqnj , i.e., making it equivalent to220

the upstream donor-cell scheme, which has the property of being exact as Courant number reaches 1221

by merely resulting qn+1
j = qnj−1 when this is substituted into (2.2). Then a Taylor expansion of (2.18)222

for k∆x� 1 yields,223

λ = 1− iαk∆x− α2 (k∆x)2

2
+ iα3 (k∆x)3

6︸ ︷︷ ︸
match λ(exact) Eq. (2.10)

−α2(1− 2α)
(k∆x)4

24︸ ︷︷ ︸
vs. + α4 (k∆x)4

24

+ iα

(
1− 5α2

2

)
(k∆x)5

180︸ ︷︷ ︸
vs. − iα5 (k∆x)5

120

+... ,

(2.19)224
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which indicates that similarly to (2.10) α and k∆x appear together in equal powers for up to α3(k∆x)3
225

power, while the mismatch in (k∆x)4 corresponds to the third-order accuracy. The leading-order trun-226

cation term (i.e., deviation from the “ideal” (k∆x)4-term) can be classified as dissipation of hyperdif-227

fusive type, because in “bends” λ toward the interior of unit circle, as228

−α2(1− 2α)
(k∆x)4

24
− α4 (k∆x)4

24
= −α2(1− α)2︸ ︷︷ ︸

negative definite

(k∆x)4

24
(2.20)229

with the maximum dissipation expected at α = 1/2, and vanishing again as Courant number reaches230

α = 1. Here it is worth noting that the above Taylor expansion implies only smallness k∆x � 1,231

but makes no assumption about smallness of α, so setting α = 1 above leads to the exact multiplier,232

including both (k∆x)4 and (k∆x)5 terms which mimics the property semi-Lagrangian schemes to be233

exact when Courant number reaches unity. Once Courant number departs from α = 0, but still α� 1,234

the hyperdiffusive effect is quadratically small with respect to α. In this respect, it is somewhat similar235

to Lax-Wendroff type scheme, rather than more typical semi-Lagrangian scheme QUICKEST (see236

Appendix A). Furthermore, comparing λ above with its “ideal” counterpart (2.10) reveals that237

λ

λ(exact)
= −α2(1− α)2 (k∆x)4

24
+ iα

(
1− 10α2 + 15α3 − 6α4

) (k∆x)5

180
+ ... , (2.21)238

where the entire r.h.s. can be interpreted as a numerically-induced “parasitic” step multiplier responsi-239

ble for the appearance of numerical distortion. The iα(...) (k∆x)5-term indicates dispersive error and240

causes phase delay of high wavenumbers when α� 1, as it acts against the “true” iα5-term in λ(exact).241

Its appearance and magnitude can be traced back to (2.13) and is associated with the truncation error242

of the spatial differencing operator (see also Fig. 1). However, the quartic polynomial in powers of α243

inside the brackets in iα(...) (k∆x)5-term vanishes when α = 1/2, α = 1, and α ≈ 1.26376261582,244

changing sign at each zero crossing. This corresponds to zero phase error and explains the appearance245

of alternating horizontal bands in the lower-right panel in Fig. 4. The stability limit is αmax = 3/2246

instead of 1 more typical semi-Lagrangian schemes: assuming that the algorithm becomes unstable247

first for 2∆x mode (this assumption is confirmed by Fig. 4), we may simply substitute k∆x = π into248

(2.18), which turns it into249

λ = 1− α2(6− 4α) . (2.22)250

This function starts as λ = 1 together with ∂λ/∂α = 0 when α = 0. Then it crosses λ = 0 at α = 1/2,251

proceeds toward λ = −1 at α = 1 which is an extremum as ∂λ/∂α = 0 there, then crosses λ = 0252

again at α ≈ 1.3660254, and finally, crosses λ = 1 at α = αmax = 3/2 thereafter exceeding |λ| = 1.253

The dissipation vanishes as Courant number becomes vanishingly small: in fact, its |λ|(1/α) → 1 as254

α → 0, where it should be emphasized that for any numerically consistent method it is expected that255

|λ| → 1 however |λ|(1/α) involves ambiguity of 1+∞ type making this property be more restrictive.256

In comparison with Fig. 2 the area where phase errors are within 1 ± 0.005 is much wider, both in257

terms of k∆x range, and Courant numbers as well. The most distinctive feature of semi-Lagrangian258

algorithms is the identically vanishing phase error at both α = 1/2 and α = 1 as well.259

To further illustrate the properties and evaluate performance of the two algorithms we setup a test260
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0.01 0.01
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0.2 0.2
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0.918 1.497
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Fig. 5. Advection a narrow pulse by LF-AM3 (left column) and semi-Lagrangian (right) algorithms. Number
on the left of each panel indicates Courant number, α = c∆t/∆x. Bold solid line indicates numerical solution,
dashed line exact solution. 256 points in all cases, left-right periodic boundary conditions, results are shown
after one period (256-point travel, moving from left to right).
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problem by initializing q = q(x) as a narrow pulse,261

q(x)
∣∣∣∣
t=0

=


[
cos

(
π

2
· x− x0

σ

)]2

, |x− x0| < σ

0 , otherwise
with


x ∈ [0, 1] , ∆x = 1/256

x0 = 3/4 , σ = 1/32
(2.23)262

which is only 8∆x-wide as measured at half of its height. The advecting velocity c = 1 is positive,263

hence the flow direction is from left to right. Periodic boundary conditions are assumed at the ends,264

so the pulse moves to the right, exits at the end and re-enters from the left. The duration of the test is265

exactly one period, so the exact solution should be the same as the initial condition. The results are266

shown on Fig. 5 covering the entire range of stability for each algorithm. Note that:267

(i) slight trailing-edge oscillations in both cases when Courant numbers are small, these are ex-268

plained by the predominantly dispersive nature of truncation error if α → 0 – delay due to269

K = K (k∆x) stays below the ideal line;270

(ii) perfectly symmetric overshoots for α = 0.5 in semi-Lagrangian case (zero numerical dispersion);271

(iii) LF-AM3 becoming more and more dissipative toward its limit of stability; semi-Lagrangian is272

exact at α = 1;273

(iv) leading-edge overshoots becoming more and more noticeable in the case of LF-AM3 for Courant274

numbers above 0.6. This maps onto the over-speeding region in c∗/c(exact) panel Fig. 2; semi-275

Lagrangian profiles are free of this effect;276

(v) numerical instability of LF-AM3 scheme due to exceeding the allowed Courant number occurs277

first at 3∆x mode corresponding to the highest point on the dispersion curve in Fig. 1, rather than278

2∆x of the semi-Lagrangian scheme.279

Overall both algorithms maintain the shape of the pulse in all computational regimes within their280

ranges of stability.281

2.2 Implicit advection282

Our next goal is to survey the properties of implicit advection schemes. While, in principle, implicit283

time stepping can be made of an arbitrary high order of accuracy in time, making it unconditionally284

stable imposes a fundamental restriction of to be no more than the second-order, if the algorithm285

has pre-determined constant (non-adaptive) coefficients associated with the time stepping itself, i.e.,286

belongs to the class of linear multistep methods (Dahlquist, 1963, see Theorem 2.2 there), essentially287

reducing the possibilities to trapezoidal integration rule (including stepping over just one or more288

time steps ∆t), backward Euler step, and positively-weighted linear combinations of them. Crank and289

Nicolson (1947) stepping combined with second-order centered spatial differencing,290

qn+1
j − qnj
∆t

+ c ·
{
θ ·

qn+1
j+1 − qn+1

j−1

2∆x
+ (1− θ) ·

qnj+1 − qnj−1

2∆x

}
= 0 (2.24)291

is, perhaps, the most widely known method of this kind. Each of the unknown qn+1
j depends on its left292

and right neighbors, so the above set of equations constitutes a tri-diagonal linear system for the entire293

set
{
qn+1
j |∀j

}
which, unlike (2.5), is no longer diagonally dominant if θ · c∆t/∆x > 1. Therefore the294

numerical stability of a standard Gaussian elimination procedure Richtmyer and Morton (1967, Sec.295
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8.5) is no longer guaranteed. In all the computations presented here we use cyclic reduction algorithm,296

cf., Buzbee et al. (1970).297

For a Fourier component eik∆xj the step multiplier of algorithm (2.24) is298

λ =
1− α(1− θ) · i sin(k∆x)

1 + αθ · i sin(k∆x)
(2.25)299

It can be instantly verified that θ = 1/2 makes the scheme non-dissipative |λ| ≡ 1 independently of k,300

|λ| < 1 if θ > 1/2 meaning unconditional stability, conversely |λ| > 1 if θ < 1/2. The asymptotic limit301

λ → −(1 − θ)/θ if α → ∞ indicates that the phase of any Fourier component receives an increment302

not exceeding π per time step, and a finite decrease in amplitude if 1/2 ≤ θ < 1.303

Furthermore, for θ = 1/2 and k∆x � 1 expanding λ in Taylor series and comparing it with the304

ideal step multiplier yields,305

λ− e−ick∆t ≡ λ− e−iαk∆x = +iα
(k∆x)3

6
+ iα3 (k∆x)3

12
+ ... (2.26)306

which indicates dispersive nature of the leading-order truncation term. It should be noted that in the307

case of ideal step multiplier e−iαk∆x all powers of α and k∆x always stay together, resulting in no308

mixed-power terms like iα(k∆x)3/6, which is the dominant factor responsible for the behavior of this309

scheme in term of the character of numerical distortion it generates in small Courant number regime.310

Both (k∆x)3 terms are imaginary of the same sign (positive) leading to delay of higher wavenumbers.311

The outcome immediately shows up in the results of the test problem (2.23), Fig. 7, left column:312

trailing-edge dispersion ripples within the entire range of Courant numbers.313

A compact version of (2.24) can be obtained by “spreading” the time derivative horizontally along314

x-direction,315

1

6
·
qn+1
j−1 − qnj−1

∆t
+

2

3
·
qn+1
j − qnj
∆t

+
1

6
·
qn+1
j+1 − qnj+1

∆t
+ c ·

{
θ
qn+1
j+1 − qn+1

j−1

2∆x
+ (1− θ)

qnj+1 − qnj−1

2∆x

}
= 0 ,

(2.27)316

which at the first glance may seem to be ad hoc, however is should be noted that the primary source317

of numerical error in (2.24) is non-staggered second-order differencing over 2∆x. Replacing it with318

fourth-order compact derivative dj = ∂xq
∣∣∣
x=xj

+ O (∆x4) leads to the system319

qn+1
j − qnj
∆t

+ c · dn+1/2
j = 0

1

6
d
n+1/2
j−1 +

2

3
d
n+1/2
j +

1

6
d
n+1/2
j+1 =

q
n+1/2
j+1 − q

n+1/2
j−1

2∆x

where


q
n+1/2
j = θqn+1

j + (1− θ)qnj
d
n+1/2
j = θdn+1

j + (1− θ)dnj
(2.28)320

where both qn+1
j and dn+1

j are the unknowns. One can use the first equation to express dn+1/2
j via qn+1

j321

and qnj , substitute this into the second, and thus algebraically exclude all dn+1/2 terms to obtain an322

implicit system for qn+1 alone323

(
1

6
− c∆t

2∆x
θ
)
· qn+1

j−1 +
2

3
· qn+1

j +
(

1

6
+
c∆t

2∆x
θ
)
· qn+1

j+1 = known terms involving qn , dn (2.29)324
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C-N, 2nd-order-centered, c∗/c(exact) C-N, compact, c∗/c(exact)

Fig. 6. Comparison of numerical-to-ideal phase speed ratios for Crank-Nicolson algorithms (2.24), left vs. (2.27),
right. Note the format is exactly the same as the lower-right panels of Figs. 2 and 4, however the contour-free
area on the lower-left portion of the plots is now much narrower, even for the case shown on the right.

which in fact is very similar to the system stemming from (2.27). Either way, the step multiplier is325

λ =
1− α(1− θ) · iK∆x

1 + αθ · iK∆x
(2.30)326

which differs from (2.25) by replacing i sin(k∆x) with iK∆x defined in (2.12),327

i sin(k∆x) → iK∆x =
i sin(k∆x)

(2/3) + (1/3) cos(k∆x)
. (2.31)328

This eliminates the iα(k∆x)3 truncation term, and, in fact, now powers of α and (k∆x) are the same329

for all terms of powers less than (k∆x)5. The numerical-to-ideal phase speed ratios for algorithms330

(2.24) and (2.27) are compared on Fig. 6. Overall, there is a major improvement for α � 1 which is331

expected, however the gain in accuracy degrades quickly once α goes beyond 1/2, making the scheme332

far less accurate than either of the explicit algorithms considered previously.333

An alternative approach to reduce truncation error of (2.24) is to discretized (2.1) using on Taylor334

expansion centered about midpoint in both time and space, (x, t) =
(
xj − ∆x

2
, tn + ∆t

2

)
,335

qn+1
j − qnj + qn+1

j−1 − qnj−1

2∆t
+ c ·

{
θ ·

qn+1
j − qn+1

j−1

∆x
+ (1− θ) ·

qnj − qnj−1

∆x

}
= 0 , (2.32)336

which is to be interpreted as the implicit equation for index j if c > 0. Conversely, if c < 0, then it337

should involve qj and qj+1. Its step multiplier338

λ =

1
2
− (1− θ) + α

(
1
2

+ (1− θ)
)
e−ik∆x

1
2

+ θ + α
(

1
2
− θ

)
e−ik∆x

(2.33)339

reveals that it is unconditionally stable as long as θ ≥ 1/2. If θ = 1/2 it becomes second-order accurate340

in space-and-time and non-dissipative, |λ| ≡ 1. Furthermore, substitution of α = 1 and θ = 1/2 into341

(2.32) yields342

qn+1
j = qnj−1 , (2.34)343
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Fig. 7. Advection and dispersive spreading of a narrow pulse by non-dissipative, unconditionally stable im-
plicit schemes using different Courant number regimes. The format is the same as in Fig. 5. Equal-weight
(θ = 1/2) Crank-Nicolson time stepping is used in all three cases. Left column second-order centered differenc-
ing in space (2.24); middle fourth-order compact scheme (2.27); right staggered in time-and-space, centered at
(x, t) = (j − 1/2, n+ 1/2) scheme, (2.32).

which is exact. This means that the scheme has vanishing phase error in the vicinity of crossing α = 1.344

The results for the test problem (2.23) using all three implicit algorithms (2.24), (2.27), and (2.32)345

are compared on Fig. 7. For small Courant numbers the middle-column is the most accurate; α = 1346

solution is exact in the right column, this scheme also produces the least dispersive spreading for α = 2,347

however, all three schemes produce virtually the same dispersion for α = 4 and above. Quadratic348

variance is maintained to machine accuracy by all three schemes in all three cases, which means that349

the numerical errors are of purely dispersive nature. The fundamental limitation of any implicit scheme350

is that for any given wavenumber k the step multiplier λ starts as λ = 1 when α = 0 and follows351

the lower half of unit circle asymptoting toward λ → −1 when α → ∞. This applies to all three352

algorithms, cf., (2.25), (2.30), and (2.33). As the result no Fourier component is allowed to change its353

phase beyond −π in one time step (the phase increment is negative if c > 0), which means that there354
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Fig. 8. Same as Fig. 7, but for θ = 0.55 in all three cases.

is no other choice, but to slow down the propagation of highest wavenumber components – the ones355

for which α · k∆x exceeds a threshold depending on the specifics of the particular algorithm. On the356

other hand, designing an algorithm which lets the phase increment to exceed π for some wavenumbers357

means admitting aliasing errors. Clearly, none of the behaviors shown on Fig. 7 are acceptable in358

practice, if Courant number exceeds α = 1.359

The only viable alternative is to selectively dissipate Fourier components propagation of which360

cannot be resolved in time. This can be achieved by choosing θ > 1/2 which biases the coefficients of361

Crank-Nicolson time step toward backward Euler. Fig. 8 shows the results for θ = 0.55. In comparison362

with Fig. 7 it makes little influence for small Courant numbers, which is expected, and makes virtually363

no change in dispersive properties, c∗/c(exact), for the entire (k∆x, α)-plane for all three schemes.364

The difference is most significant for the largest Courant numbers, where the oscillatory behavior is365

changed to dissipative. Some oscillations are still noticeable in the range α = 0.8...2 even in the366

case of compact scheme in the middle. While further increase of θ would lead to a more dissipative367

behavior with less oscillations, it should be noted that θ = 0.55 compact scheme is already more368

dissipative than either LF-AM3 or semi-Lagrangian explicit algorithms presented in Fig. 5 for the369

Courant number regimes starting at α ∼ 0.4. At the same time we note that dispersive errors of the370

nondissipative algorithm in Fig. 7, middle column, are also larger than on Fig. 5 for the same values of371

αs. Some dissipation is needed to control the oscillations, however using θ > 1/2 is too non-selective:372

too much dissipation for α ∼ 0.5 while not enough beyond α = 1.373
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In contrast explicit schemes can be designed to be time-space accurate for the entire range of374

their stability. This is explained by the tendency of canceling the phase errors due to time and space375

differencing once Courant number departs α� 1, especially in the case of semi-Lagrangian algorithm376

(Fig. 4, lower-right panel and caption). Although to a lesser degree, there is also such tendency for LF-377

AM3 stepping because when α � 1 the truncation error of time differencing is very small because378

it is third-order in time, but once α departs from being vanishingly small, the truncation error of379

LF-AM3 stepping introduces phase lead (cf., Fig. 20 from SM2005) which partially compensates the380

delay caused by truncation error of spatial differencing 4 . In contrast, the second-order truncation381

error of Crank-Nicolson step (as well as its θ > 1/2 variant) introduces additional phase delay to382

already existing delay due to spatial differencing. Consequently, the range of Courant numbers αwhich383

produce numerically accurate solutions is much narrower in the case of implicit schemes considered384

here.385

3 Adaptively Implicit Advection386

Because of the fundamental limitations set by Dahlquist (1963) it is impossible for a Linear Multi-387

step Method (LMM) to achieve unconditional stability while having higher than second-order temporal388

accuracy. On the other hand, as shown in the previous section, retaining third-order is highly desirable389

if a high-order spatial differencing is used to approximate advection operator. This conflict can be390

resolved by constructing an algorithm which is outside the class of LMM methods by allowing the391

coefficients of the implicit scheme to depend on Courant number, which means that the coefficients392

are adaptive. In this section we describe such an algorithm.393

3.1 Algorithm394

Implicit vertical advection fluxes for the tracer or velocity fields are discretized in such a way that395

their computation involve the advected field at the new time step, qn+1
k which is yet unknown 5

396

FCk+1/2 = Wk+1/2 ·Q
(
qn+1
k , qn+1

k+1 , q̃
n+1/2
k+1/2

)
, (3.1)397

4 We should note that the analysis performed in this section may leave an impression that logically-forward-in-
time semi-Lagrangian approach is far superior to LF-AM3 stepping (or, in fact, to any algorithm with spatial and
temporal discretization done independently) in terms of accuracy per computational effort. However, our analysis
is performed in one dimension. Generalization of LF-AM3 stepping to 3D is straightforward. In contrast, a semi-
Lagrangian approach require introduction of cross-terms in order to avoid flux-splitting instability (Leonard
et al., 1996) which dramatically increase its complexity and computational cost, therefore making the two classes
of advection algorithm quite competitive.
5 Similarly to the convention adopted in SM2005 (footnote 10 there), index k is used exclusively for the vertical
direction while i and j for the horizontal. All three indices i, j, k may be either whole- or half-integer (e.g.,
k + 1/2). Whole-integer index means that the variable is located in the middle of grid box centered around
scalar point, while half-integer means that it is located at the interface between the two adjacent grid boxes.
For compactness of notation we may omit i, j in equations if they are the same for all the indexed variables
in the equation, and the variables are placed on the same location on the horizontally staggered grid, i.e., all
the operations take place within the same vertical column. Indices i, j are allowed to disappear and reappear as
needed if horizontal differencing or interpolation takes place.

17



where Wk+1/2 is finite-volume vertical velocity flux in generalized sigma-coordinate sense; while half-398

integer-indexed in both vertical direction and time, q̃ n+1/2
k+1/2 , are the flux values of an explicit advection399

algorithm usually involving a high-order spatial interpolation from grid-box-centered to interface lo-400

cation of the provisional field q
n+1/2
k , k = 1, ..., N which in its turn is computed by predictor401

sub-step, or interpolated from upstream values in the case of semi-Lagrangian advection (SM2005,402

Sec. 4 there). In the case of predictor-corrector algorithm both stages need to be implicit in vertical403

direction, so (3.1) written for corrector stage also applies from predictor, except that all time indices404

are shifted back by 1/2, hence FCk+1/2 = Wk+1/2 · Q
(
q
n+1/2
k , q

n+1/2
k+1 , q̃ nk+1/2

)
, with qn+1/2 treated as405

unknowns.406

The above expression for advective flux (3.1) can be rearranged by splitting Wk+1/2 into two parts,407

Wk+1/2 = W
(e)
k+1/2 +W

(i)
k+1/2, ∀k = 0, 1, ..., N (3.2)408

whereW (i)
k+1/2 participates only in computing terms involving qn+1

k , qn+1
k±1 only (i.e., implicit part), while409

W
(e)
k+1/2 is for the remaining q̃ n+1/2

k+1/2 . Then, the W (e)-terms are computed within the already existing410

algorithm of r.h.s. terms for the momentum and tracer equations, while computation of W (i)-terms is411

combined with the implicit operator for vertical viscosity and diffusion. Assuming upstream treatment412

of the implicit part,413

FC
(i)
k+1/2 = W

(i)
k+1/2 ·


qn+1
k , if W

(i)
k+1/2 > 0

qn+1
k+1 , if W

(i)
k+1/2 < 0

(3.3)414

the combined implicit advection-diffusion system becomes:415

k = N , uppermost grid box,416

Hn+1
N qn+1

N = Hn
Nq

n
N +∆t · rhs′N +∆t · SRFRC −∆t · AN−1/2

qn+1
N − qn+1

N−1

∆zN−1/2

+
∆t

∆A

[
max

(
W

(i)
N−1/2, 0

)
qn+1
N−1 + min

(
W

(i)
N−1/2, 0

)
qn+1
N

] (3.4)417

k = 2, ..., N − 1418

Hn+1
k qn+1

k = Hn
k q

n
k +∆t · rhs′k +∆t · Ak+1/2

qn+1
k+1 − qn+1

k

∆zk+1/2

− ∆t

∆A

[
max

(
W

(i)
k+1/2, 0

)
qn+1
k

+min
(
W

(i)
k+1/2, 0

)
qn+1
k+1

]
−∆t · Ak−1/2

qn+1
k − qn+1

k−1

∆zk−1/2

+
∆t

∆A

[
max

(
W

(i)
k−1/2, 0

)
qn+1
k−1

+min
(
W

(i)
k−1/2, 0

)
qn+1
k

]
(3.5)419

k = 1, bottom grid box,420

Hn+1
1 qn+1

1 = Hn
1 q

n
1 +∆t · rhs′1 +∆t · A3/2

qn+1
2 − qn+1

1

∆z3/2
− ∆t

∆A

[
max

(
W

(i)
3/2 , 0

)
qn+1

1

+min
(
W

(i)
3/2 , 0

)
qn+1

2

]
−∆t · rD · qn+1

1

(3.6)421
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where the prime in rhs′k = rhs′i,j,k means that the usual r.h.s. computed by ROMS code for the corre-422

sponding equations, except the replacement Wk+1/2 → W
(e)
k+1/2. H

n
k is the high of grid box around qnk423

and ∆A = ∆Ai,j is the grid-box area as seen from above (hence their product Hn
i,j,k∆Ai,j = ∆Vi,j,k424

is the control volume for qni,j,k, while the presence of time index in Hn
k is due to time dependency of425

grid-box height due to changing free surface); Ak+1/2 is vertical viscosity/diffusion coefficient (includ-426

ing the stabilization terms (Lemarié et al., 2012, Sec. 3) in the case when isoneutral lateral diffusion427

is used). The above system takes into account kinematic boundary conditions at surface and bottom,428

WN+1/2 = W1/2 = 0. SRFRC is surface forcing (wind stress for the momentum equations or heat/fresh-429

water flux for tracers). The last term ∆t · rDqn+1
1 in (3.6) is applicable for momentum equations only,430

q ∈ {u, v}. rD is the bottom drag coefficient, which is, generally speaking, nonlinear and depends431

bottom-most velocity magnitude, rD = rD
(√

(u1)2 + (v1)2
)

computed from the most recent explic-432

itly known velocity values. At the same time, it is expected that ∆t · rD/H1 > 1 so the implicit433

treatment of the whole bottom drag term ∆t · rD ·u1 is essential for numerical stability without impos-434

ing non-physical restriction on rD or reducing time step. No-flux bottom b.c. are assumed for tracer435

equations, (3.6) is the same except that there is no counterpart for rD term on the third line.436

As in the original ROMS code, the new algorithm has simultaneous conservation and constancy437

preservation properties for tracers, despite the fact that grid box heights change due to changing free438

surface, Hn+1
k 6= Hn

k . This can be verified by substituting q ≡ 1 into (3.4)–(3.6), including the rhs′k439

terms which contain both the horizontal advection fluxes and the W (e)-part of vertical, then noting440

that W (e) and W (i) add up into W , and, finally, verifying that after this substitute the above becomes441

equivalent to continuity equation (1.17) from SM2005, hence all the conservation properties of mode442

splitting and coupling algorithm developed there are still fully respected.443

The splitting in (3.2) works as follows:444

At first, vertical velocity fluxes Wi,j,k+1/2 are computed the standard way [cf., SM2005, Eqs. (1.18)-445

(1.19)]. Our next goal is to split them into two parts, W (e) and W (i), in such a way that the explicit446

part W (e) in combination with the horizontal velocity fluxes are guaranteed to stay within the limits of447

numerical stability of explicit 3D-algorithm. The ”excess” vertical flux W (i) = W −W (e) is excluded448

from the stability budget because of the implicit treatment (3.4)-(3.6). The a priori stability criterion449

of an advective algorithm depends on specific numerical detail of time stepping, spatial interpolation,450

nonuniformity of computational grid, and therefore is difficult to define universally. We therefore chose451

an approximate path. A relevant finite-volume Courant number αi,j,k defined as the sum of fluxes452

outgoing from the grid box, normalized by the time step size ∆t and grid-box volume ∆Vi,j,k,453

αi,j,k =
∆t

∆Vi,j,k
·
[

max(Ui+1/2,j,k, 0)−min(Ui−1/2,j,k, 0)

+max(Vi,j+1/2,k, 0)−min(Vi,j−1/2,k, 0)

+max(Wi,j,k+1/2, 0)−min(Wi,j,k−1/2, 0)
]
,

(3.7)454

where the uppercase Ui+1/2,j,k, Vi,j+1/2,k, and Wi,j,k+1/2 denote finite-volume fluxes (velocity compo-455

nents multiplied by the cross-sections of contact surfaces of grid boxes adjacent in the respective di-456

rections). The above defined αi,j,k can be interpreted as the fraction of fluid within the grid-box which457

is replaced during one time step. αi,j,k ≥ 1 corresponds to the situation when forward-in-time, first-458

order upstream scheme looses its positive-definiteness property and becomes numerically unstable.459
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For any other numerical scheme one must define the maximum allowed value αmax not necessarily460

equal to 1. Then to guarantee that αi,j,k ≤ αmax, with αi,j,k = α
(
U, V,W (e)

)
defined above, it is461

sufficient to restrict462

W
(e)
i,j,k+1/2 = min

{
αmax − εα⊥i,j,k

∆t
∆Vi,j,k ,max

[
Wi,j,k+1/2 ,−

αmax − εα⊥i,j,k+1

∆t
∆Vi,j,k+1

]}
(3.8)463

where464

α⊥i,j,k =
∆t

∆Vi,j,k
·
[

max(Ui+1/2,j,k, 0)−min(Ui−1/2,j,k, 0)

+max(Vi,j+1/2,k, 0)−min(Vi,j−1/2,k, 0)
]
,

(3.9)465

is the contribution of horizontal fluxes into αi,j,k and we have introduced ε ∼ 1 which is a weighting466

coefficient to take into account the difference in stability limits of horizontal and vertical advection467

schemes considered separately (one-dimensionally). In the same numerical approximations are used468

in all direction then ε = 1. If, for example, horizontal advection is 4th-order centered difference469

and vertical is 4th-order compact, then ε =
[√√

6− 3/2 ·
(
1 + 1/

√
6
)]/√

3 ≈ 1.37222/1.73205 =470

0.79225 which is the ratio of the maxima of dispersive curves for 4th-order centered and compact471

schemes in Fig. 1. If horizontal advection uses 4rd-order centered scheme during predictor stage of472

LF-AM3 step and 3rd-order upstream-biased during corrector (hence no-longer pure imaginary Fourier473

image), while vertical is 4th-order compact during both, then ε is the ratio of the actual stability limits,474

ε ≈ 0.915/1.003 ≈ 0.91, (cf., Fig. 24, middle row, vs. Figs. 2 and 5, left) which takes into account475

not only spatial discretizations, but also their combined properties with the specific time stepping476

algorithm. In practice, optimal selection of ε may be adjusted from the ratio of formal stability limits477

because some explicit schemes may exhibit undesirable behavior when used close to their limits (e.g.,478

lack of dissipation combined with large phase errors) which needs to be avoided.479

In (3.8) it assumed that εα⊥i,j,k < αmax, so both expressions αmax − εα⊥i,j,k and αmax − εα⊥i,j,k+1480

in (3.8) are positive. Thus, (3.8) is simply to check whether the value of Wi,j,k+1/2 is within the two481

bounds (one is always positive, the other is always negative) and limit it if otherwise. Once W (e)
k+1/2 is482

known, the implicit is always computed as the remainder,483

W
(i)
i,j,k+1/2 = Wi,j,k+1/2 −W (e)

i,j,k+1/2 . (3.10)484

Eq. (3.8) can be rewritten as485

W
(e)
i,j,k+1/2 =

Wi,j,k+1/2

f (α∗w, α
∗
max)

where



α∗w = ∆t ·Wi,j,k+1/2/∆Vi,j,k

α∗max = αmax − εα⊥i,j,k

 if Wi,j,k+1/2 > 0

α∗w = ∆t ·
∣∣∣Wi,j,k+1/2

∣∣∣ /∆Vi,j,k+1

α∗max = αmax − εα⊥i,j,k+1

 if Wi,j,k+1/2 < 0

(3.11)486

and the limiting function487

f(α, αmax) =


1 , if α ≤ αmax

α/αmax , if α > αmax

(3.12)488
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which is continuous with respect to α crossing the threshold value αmax, but is not differentiable there.489

It is advantageous for the reasons evident from the analysis below to modify (in fact, generalize) it as490

f(α, αmax) =



1 , if α ≤ αmin

1 +
(α− αmin)2

4αmax (αmax − αmin)
, if αmin < α < 2αmax − αmin

α/αmax , if α ≥ 2αmax − αmin

(3.13)491

which above consists of three segments – constant, parabolic, and linear – smoothly matched to each492

other (Fig. 9). The two values, αmin and αmax, control the threshold below which the algorithm is

Fig. 9. Limiting function for splitting vertical velocity into explicit and im-
plicit parts.

493

fully explicit as is the original ROMS code, and the maximum allowed time step for the explicit494

part. The newly introduced αmin is chosen to be a fixed fraction of αmax – noted that application of495

limiting function via (3.11) implies that αmax received by f(α, αmax) as its second argument is adjusted496

(reduced) by the contribution of horizontal fluxes. In practical algorithm we define two parameters497

(fixed values) which set the initial values for αmin and αmax. Then, for the purpose of computing498

(3.11) α∗max = αmax − εα⊥ taken from the grid box above or below depending in the sign of vertical499

velocity, and α∗min = αmin · α∗max/αmax are used for computing limiting function f(.). Selection αmin500

and αmax, of their values is based on analysis of numerical stability and accuracy of the explicit part501

of the algorithm and will be detailed below.502

The motivation for using upstream discretization (3.3) for the implicit part comes from the fact503

that it is monotonic and leads to a well posed, diagonally dominant discrete system. This choice is504

further justified by the observation that in practical model solutions large vertical velocities occur only505

in places with vanishing (or even unstable) stratification and, consequently, already large mixing set by506

the vertical parameterization scheme. On the other hand, it is evident that a centered-in-space version507
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of (3.4)-(3.6) is obtained by replacing508

max
(
W

(i)
k+1/2, 0

)
qn+1
k + min

(
W

(i)
k+1/2, 0

)
qn+1
k+1 → W

(i)
k+1/2 ·

qn+1
k + qn+1

k+1

2
(3.14)509

everywhere where max and min occur. Because of predominantly backward-Euler time stepping for510

Courant numbers exceeding threshold value αmax it is also dissipative, thought to a lesser degree than511

the upstream under the same conditions. However, stability analysis (next section) leads to different512

settings of threshold values αmin, αmax for centered vs. upstream versions of the implicit part to ensure513

the unconditional stability (transition to implicitness must occur earlier and at a heavier weight in the514

centered case) resulting in virtually identical overall dissipation and phase errors for both adaptive515

algorithms, despite the fact that the centered scheme is second-order accurate in space, while upstream516

is only first. This further negates a motivation to abandon diagonal dominance of algorithm described517

above.518

Selecting α∗ as the upstream value between αk and αk+1 in (3.11) in combination with computing519

Courant number from outgoing fluxes via (3.7) yields α∗ dominated by the contribution from Wk+1/2520

itself in the case where vertical Courant number becomes large and the adaptive limiting is activated,521

i.e., where it matters. This applies to both upward and downward Wk+1/2, while the only difference522

that contribution from the horizontal fluxes is taken from either the grid box below or above the in-523

terface k + 1/2. Overall, the algorithm is designed to avoid spatial averaging in any direction when524

computing Courant number: this is motivated by the desire to avoid an underestimate in situation when525

velocity field is not smooth on grid-scale (e.g., if alternatively to (3.7) one can average all three veloc-526

ity components toward the center of grid box Hi,j,k and compute α using these values. The outcome527

may be substantially different when the velocity field is a checker-board mode in all three directions528

as pair-wise averaging of opposite sign values leads to a smaller computed Courant number, delay in529

triggering adaptive algorithm, and failure to prevent numerical instability). Alternatively to using the530

upstream value for α∗ in (3.11), a more restrictive option α∗ = max {αk, αk+1} was tried as well. In531

practice neither option have shown any advantage over the other, nor yielded a noticeable difference532

in the results.533

3.2 Fourier analysis, stability, and parameter optimization534

In the case of uniform grid spacing, ∆x = const, and in the absence of physically-motivated diffu-535

sion, A = 0, the combination of LF-AM3 time-stepping (2.6)-(2.7) with adaptively-implicit advection536

algorithm (3.5) becomes 6 :537

q
n+1/2
j =

(
1

2
− 2γ

)
qn−1
j +

(
1

2
+ 2γ

)
qnj − (1− 2γ)

[
α′
(
q̃nj+1/2 − q̃nj−1/2

)
+α′′

(
q
n+1/2
j − qn+1/2

j−1

)] (3.15)538

followed by539

qn+1
j = qnj − α′

(
q̃
n+1/2
j+1/2 − q̃

n+1/2
j−1/2

)
− α′′

(
qn+1
j − qn+1

j−1

)
(3.16)540

6 For simplicity we limit ourselves to the analysis to the one-dimension case, as all the motion takes place in
vertical direction only. Generalization to multiple dimensions – essentially having horizontal advection using an
explicit algorithms in addition to vertical is considered in Appendix C.
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where541

α =
c∆t

∆x
, α′ =

α

f(α)
, α′′ = α− α′ (3.17)542

are Courant number, its explicit portion limited by (3.13), and the remainder to be treated implicitly.543

γ = 1/12 is needed to achieve the third-order temporal accuracy; alternative setting γ = 0 corresponds544

to LF-TR step which is second-order.545

Inserting Fourier component qnj = λn · q̂k · eik∆xj into above and replacing of spatial differences546

with their Fourier images,547

q̃j+1/2 − q̃j−1/2 = iK∆x · q̂k · eik∆xj , qj − qj−1 =
(
1− e−ik∆x

)
· q̂k · eik∆xj , (3.18)548

where iK∆x is the same as in (2.12), yields the characteristic equation549

[
1 + α′′

(
1− e−ik∆x

)]
λ = 1 −iα′K∆x ·

(
1
2

+ 2γ
)
− iα′K∆x (1− 2γ)

1 + α′′ (1− e−ik∆x) (1− 2γ)

−iα′K∆x ·

(
1
2
− 2γ

)
1 + α′′ (1− e−ik∆x) (1− 2γ)

· λ−1 .

(3.19)550

It is easy to verify that the above reverts back to (2.14) if α′ → α and α′′ → 0. In the opposite551

limit, setting α′ → 0 and α′′ → α yields only one root, λ =
[
1 + α′′

(
1− e−ik∆x

)]−1
as the equa-552

tion degenerates from the second- to the first-order. This λ corresponds to backward-Euler-in-time,553

upstream-in-space scheme, which is |λ| ≤ 1 for the entire range of values, 0 ≤ α < +∞, monotonic,554

but only first-order in time and in space. Since 0 ≤ k∆x < −π, therefore e−ik∆x assumes complex555

values on the lower half of unit circle (has negative imaginary part), no Fourier component is allowed556

to have phase increment per time step ∆t to exceed π/4, which means phase delay for all Fourier557

components. In the general case when both α′ 6= 0 and α′′ 6= 0, the values of λ become some blending558

(generally speaking nonlinear) of these two extreme cases. Below in this part we show that with an559

appropriate choice of limiting function f = f(α) the algorithm can be made unconditionally stable,560

but at the same time retain good accuracy for the Fourier components which frequencies are resolved561

in time.562

Intuitively the upper threshold αmax has the meaning of “never exceed speed” for the explicit com-563

ponent, hence should be chosen not larger than its limit of stability, e.g., α = 0.915 in the case of564

LF-AM3 stepping combined with 4th-order compact spatial discretization. Also, because the implicit565

component of the adaptive algorithm is expected to be less accurate than the explicit, both αmin and566

αmax should be chosen as large as possible to minimize numerical errors. This leads to a natural first567

guess of αmin = αmax = 0.915. The resultant |λ|1/α and c∗/c(exact) are shown in Fig. 10. The algorithm568

is unconditionally stable, but it has evident drawbacks: both dissipation and phase speed are changing569

abruptly once α exceeds the threshold value; there is also sharp raise toward |λ| = 1 in the vicinity of570

k∆x ≈ 2π/3, α = 0.915, which may lead to undamped and unresolved modes resulting in numerical571

artifacts. In part this sharp transition is due to the fact that choosing αmin = αmax causes (3.13) switch572

sharply between the constant and linear segments. The other contributor to the non-smoothness is the573

structure of physical mode of the explicit version of LF-AM3 itself: at first the physical mode follows574

the units circle while gradually departing inward, then when approaching the stability limit it bends575

outward and crosses the unit circle at significant angle. The sharp raise in toward 1 in |λ|1/α panel576

Fig. 10 is traced back to this property of LF-AM3. Inserting the parabolic segment into (3.13) (hence577
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Adaptive, αmin = αmax = 0.915, |λ|(1/α) c∗/c(exact)

Fig. 10. Amplitude multiplier per 1∆x travel, |λ|(1/α) (left), and numerical-to-ideal phase-speed ratio, c∗/c(exact)

(right) adaptive advection scheme with αmin = αmax = 0.915.

choosing αmin < αmax) should make smooth transition in the properties of the adaptive algorithm,578

but, as we will see soon, also helps to modify the behavior of the algorithm in the vicinity of Courant579

numbers close to stability limit of the explicit version of LF-AM3.580

Another complication comes from the fact that both fully-explicit and adaptively-implicit versions581

of LF-AM3 time stepping have one physical and one computational mode. In the explicit case the582

computational mode stays well inside the unit circle for the entire range of stability (SM2005, see Fig.583

20, third diagram on the bottom row). Therefore the computational mode is not a concern in Fig. 2,584

where both |λ|(1/α) and c∗/c(exact) belong to the physical mode. It also happens that the computational585

mode stays well within |λ| < 1 for the adaptively-implicit algorithm with parameter choice shown586

in Fig. 10. However, we will see soon, this is not always the case for the adaptive algorithm, and the587

computational mode may have larger amplitude of |λ| than physical for some combinations of k∆x588

and α, thus both modes require consideration, and, because the behavior of computational mode is less589

predictable than of physical, one needs to perform a full survey of parameter space rather than rely on590

intuitive settings.591

To search for suitable settings αmin and αmax we note that stability of the explicit version de-592

pends entirely on the behavior of its characteristic equation (2.14) along the line k∆x = 2π/3 on the593

(k∆x, α)-plane corresponding to the maximum possible value of K∆x = K∆x(k∆x) for all k∆x594

– the highest point on bold curve in Fig. 1, resulting in K∆x =
√

3. Therefore, it is useful to study595

behavior of the characteristic equation of the adaptive algorithm (3.19) along the same line. This is596

presented in Fig. 11. At first, we remind ourselves the properties of explicit LF-AM3 algorithm, top-597

left. It is identical to the third panel in bottom row in Fig. 20 from SM2005, with the exception that598

the original meaning of polar angle was ω∆t (time step normalized by frequency of oscillation), and599

now it is ϕ = α ·K∆x. LF-AM3 becomes unstable when its physical mode leaves the unit circle at600

ϕ ≈ 1.58745, which corresponds to α = 0.915. The computational mode for this algorithm stays well601

inside the unit circle and does not affect stability. Then, starting with αmin = 0.915 and decreasing it602

toward 0, we find the maximum possible values of αmax = αmax(αmin) for which the characteristic603

roots of (3.19) stay within the unit circle. In practice (except for αmin = 0.915) this means that either604

the physical or the computational mode approaches and touches the unit circle and turns inward (a605

small increase in αmax relative to its stated value would cause exit and re-entry of the unit circle in606
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explicit LF-AM3 αmin = αmax = 0.915
αmin = 0.855
αmax = 0.967

αmin = 0.85
αmax = 0.9702

αmin = 0.845
αmax = 0.9735

αmin = 0.8
αmax = 1.0024

αmin = 0.7
αmax = 1.062

αmin = 0.6
αmax = 1.118

αmin = 0.5
αmax = 1.171

αmin = 0.3
αmax = 1.273

αmin = 0.1
αmax = 1.370

αmin = 0
αmax = 1.417

Fig. 11. Top left: characteristic roots λ plotted against unit-circle on complex-plane for explicit LF-AM3 step-
ping. The argument ϕ (clockwise angle from positive direction of x-axis) corresponds to α ·

√
3 where α is

Courant number, and multiplier
√

3 corresponds to the highest point on bold K∆x = K∆x(k∆x) curve in
Fig. 1. Bold line corresponds to physical mode, thin line to computational. Outer notches on the unit circle indi-
cate the locations of “ideal” roots; notches on the inner side of bold line indicate the actual roots corresponding
to each ideal. Thin straight lines connecting the two roots illustrate the numerical error: displacement along the
unit circle manifests numerical dispersion, moving inward – dissipation. [It should be noted that ideal in this
context means ideal from the point of view of time stepping analysis only, since the exact phase multiplier for
k∆x = 2π/3 mode should be eiα·2π/3 in the case of ideal spatial differencing rather than eiα·

√
3 used as the

basis for comparison here.] All other panels: for each αmin = 0.915, 0.855, ... 0.1, 0 we find the maximum
possible αmax for which both the physical and the computational characteristic roots λ of the adaptive algorithm
(3.19) of stay entirely within the unit circle.
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each case). The entire sequence shown in Fig. 11 exhibits only one qualitative change in behavior at607

αmin = 0.85 before which it is the physical mode approaches the unit circle, while the computational608

stays inside. Beyond 0.85 they switch roles, and all other diagrams look alike, and differ mainly by the609

level physical mode dissipation. This sequence indicates that selecting αmin smaller than the stability610

limit of the explicit scheme, 0.915, also allows to select αmax beyond it, which is, in fact, contrary to611

the “never exceed speed” rationale. The explanation comes from the fact that once Courant number612

exceeds α = αmin, the explicit scheme is blended with a highly dissipative implicit which introduces613

numerical damping of the high wavenumber Fourier components – those which would be unstable first614

in the case of fully explicit algorithm. This applies to both physical and computational modes.615

Adaptive, αmin = 0.5 , αmax = 1.171, |λ|(1/α) αmin = 0.5 , αmax = 1.1656

Fig. 12. Left: |λ|(1/α) for an adaptive scheme with arbitrarily picked value ofαmin (0.5 in this case) and maximum
possible αmax = 1.171 as predicted by the 1D-analysis along k∆x = 2π/3 line (indicated on this plot as
vertical dashed line). Note that |λ|(1/α) approaches 1 from below when moving along k∆x = 2π/3 line at
α ≈ 1.2 (consistently with the analysis in Fig. 11), however the actual two-dimensional maximum of |λ|(1/α)

lies slightly on the left from the line, so the values inside the dashed contour exceed 1, rendering this algorithm
be numerically unstable within this “hole” on (k∆x, α)-plane. Right: same, but with αmax adjusted to lower
down the value of 2D maximum of |λ|(1/α) to not exceed 1, hence eliminating the hole.

While the 1D analysis in Fig. 11 exposes mutual influences of αmin vs. αmax settings on numerical616

stability, its outcome is not automatically applicable to the entire (k∆x, α)-plane because algorithm617

(3.15)-(3.16) blends two spatial discretizations with qualitatively different Fourier images of the first618

spatial derivative (cf., iK∆x for centered compact fourth-order differencing vs. (1 − e−ik∆x) for the619

upstream). This means that stability analysis of (3.19) cannot be, in principle, reduced to separate620

analysis of spatial and temporal schemes as it is possible in the case of (2.14) where α and iK∆x621

appear exclusively as the product of iαK∆x and never separately 7 , hence the unconditional stability622

along the k∆x = 2π/3-line presented in Fig. 11 does not guarantee the unconditional stability for623

the entire two-dimensional (k∆x, α)-plane. This is illustrated in Fig. 12. The maximum values of624

αmax = αmax(αmin) from Fig. 11 are therefore need to be adjusted for each αmin using full 2D analysis.625

They become626

7 Strictly speaking, for this reason alone the adaptive algorithm can no longer be classified as a method of lines,
even thought the underlying explicit algorithm is.
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Fig. 13. Region of unconditional stability of algorithm (3.15)-(3.16) shown as
shaded area on (αmin, αmax)-plane. Dashed line on the top corresponds to the
sequence of the maximum possible αmax = αmax (αmin) settings resulting
from the 1D analysis along k∆x = 2π/3 line from Fig. 11. Note the gap
between the shaded area and the line.

αmin 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 .85 .9 .915

α∗max 1.417 1.37 1.323 1.273 1.224 1.171 1.118 1.062 1.0024 .9702 .93 .915

α∗∗max 1.399 1.355 1.3095 1.263 1.215 1.1656 1.114 1.0603 1.0024 .9702 .93 .915

627

where α∗max are from Fig. 11 included for comparison, and α∗∗max are the final values. The fact that628

the two sets of values become indistinguishable as αmin approaches 0.915 is explained by the fact629

the location of instability hole is centered on the k∆x = 2π/3-line for αmin = 0.915, and remains630

nearly centered (gradually moves to the left) when αmin departs from 0.915, which means that the631

analysis in Fig. 11 is still very accurate there. The qualitative behavior of physical and computational632

mode characteristic roots λ shown in Fig. 11 remains the same if a similar analysis is performed not633

for k∆x = 2π/3, but for k∆x = const-lines crossing the actual 2D-maximum of |λ|(1/α) in each634

αmin, α
∗∗
max setting from the table above. Therefore the table defines the envelope of unconditional635

region in (αmin, αmax)-parameter space as636

0 ≤ αmin ≤ 0.915 αmin ≤ αmax ≤ α∗∗max(αmin) , (3.20)637

which is illustrated in Fig. 13.638

Besides stability, two other considerations are involved in choosing threshold values: (i) providing639

sufficient numerical damping to the 2D maximum of |λ|(1/α) (which requires that αmax is further640

reduced from the α∗∗max value in the table above, and (ii) continuity and smoothness of the properties641

of the numerical scheme as the actual Courant number crosses the threshold of implicit components642

(satisfying this needs to widen the gap between αmin and αmax, which in its turn leads to selection of643

smaller values of αmin less than 0.915 – the maximum allowed).644

To ensure sufficient numerical damping – item (i) above, we note that the undesirable transient645

uplift of |λ| toward 1 in the vicinity of (k∆x = 2/π/3 , α = 0.915) on Fig. 10 is traced back to the646

behavior of physical mode in second panel on top row of Fig. 11, an can be eliminated completely by647

adjusting the values of αmin, αmax, as shown in Fig. 14. With such choice of parameters it is possi-648

ble to encircle the computational mode by the physical, while at the same time to achieve monotonic649

decrease of amplitude of physical |λ| with increasing Courant number α (thought |λ|(1/α) still has650

some weak non-monotonic behavior as manifested by the closed contour .55), and also push back the651

phase delay of high-wavenumber modes as α increases. However, the latter applies only in the vicinity652

of k∆x = 2π/3, while there is still sharp transition in both dissipative and dispersive properties for653
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αmin = 0.885
αmax = 0.900

αmin = 0.885
αmax = 0.905

αmin = 0.885
αmax = 0.910

αmin = 0.885
αmax = 0.915

Adaptive, αmin = 0.885 , αmax = 0.910, |λ|(1/α) c∗/c(exact)

Fig. 14. Addressing the non-smooth transition in dissipative properties of the αmin = αmax = 0.915 algorithm
in Fig. 10: Top row: evolution of characteristic roots λ for physical and computational modes computed along
k∆x = 2π/3 line (same as in Fig. 11) with changing αmax. Note that the two modes meet each other and
reconnect when αmax = 0.905 → 0.910 resulting in a scheme with computational mode amplitude |λ| be
consistency smaller than physical, and with monotonically increasing dissipation of physical mode as it spirals
inward the unit circle (further increase in αmax causes bulging of the physical mode toward the unit circle,
making the overall pattern be similar to third panel in top row of Fig. 11). Bottom: |λ|(1/α) and c∗/c(exact) for
αmin = 0.885 αmax = 0.910 in the same format as in Fig. 10.

resolved wavenumbers (k∆x <∼ π/3 , , α ∼ 0.9). (Sharp transition for the highest wavenumbers,654

k∆x > 3π/4 is much less important because dispersive errors are very large there any way). To elim-655

inate the sharp transition one needs to widen the gap between αmin and656

alphamax. Unfortunately this is impossible to achieve while maintaining the qualitative pattern ob-657

served on the third circle diagram of Fig. 10 (keeping the computational mode inside the physical, and658

having monotonic dissipation of the latter), hence a compromise needs to be made.659

In practice, given that the explicit LF-AM3 already start exhibiting noticeable dissipative behavior660

for α > 0.6 (cf., Figs. 4 and 5), the first threshold value αmin should be chosen in this vicinity as well661

(as picking a higher value does not lead to a scheme with a significantly smaller dissipation for these662

Courant numbers. The second threshold,663

alphamax, is then selected to “sink” the 2D maximum of |λ|(1/α) down from 1 to an acceptable value, so664

the scheme does not leave undamped Fourier components if the actual Courant number happens to be665
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Fully implicit, |λ|(1/α) c∗/c(exact)

Adaptively implicit |λ|(1/α) c∗/c(exact)

Fig. 15. Amplitude multiplier per 1∆x travel |λ|(1/α) (left column) and the ratio of numerical to “ideal” phase
speeds (right column) for fully-implicit (backward-Euler in time, upstream in space, upper row) and adaptive-
ly-implicit (using LF-AM3 stepping for the explicit part; bottom row) advection algorithm. The threshold values
in the adaptive algorithm are αmin = 0.6, αmax = 1.0. Note that the 0 < α < αmin portions of both lower
panels are exactly the same as in the corresponding panels in Fig. 2. Because LF-AM3 algorithm have one
physical and one computational mode, plotted on the |λ|(1/α) panel above is the maximum of the two modes.
However, c∗/c(exact) is still for physical mode only. The eye-like pattern in |λ|(1/α) panel centered around
(k∆x = 2π/3, α ≈ 1.2) with an apparent non-smooth transition from the rest of the plot is due to the fact that
in the vicinity of this point the amplitude of computational mode exceeds that of the physical mode, thought
both of them are well within the unit circle – the local maximum value there is |λ|(1/α) ≈ 0.72.

close that of the maximum. An example of such setting is illustrated in Fig. 15, bottom row, where we666

have chosen αmin = 0.6, αmax = 1.0. For comparison we also include similar panels for fully implicit667

backward Euler, upstream-in-space advection, which is unconditionally stable, monotonic, but is only668

first-order accurate in space and time, and, accordingly, is highly dissipative. In the asymptotic limit669

of infinitely large Courant number, α → ∞, the properties of the adaptive and fully implicit schemes670

become the same. On the other hand, for all regimes within α ≤ αmin the adaptive scheme is identical671

to that on Fig. 2, left column. The transition zone begins at α = αmin, and because LF-AM3 stepping672

has tendency for phase acceleration toward the end of its stability limit, while implicit step causes673

delay, a proper choice of αmin, αmax can utilize compensation of these effects resulting in a wider674
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Adaptive, 2nd-order-centered implicit part, |λ|(1/α) c∗/c(exact)

Fig. 16. Same as Fig. 15, but using second-order centered scheme for the implicit part instead of upstream,
αmin = 0.6, and αmax = 0.75.

zone where the adaptive scheme is accurate in phase speed (cf., Fig. 15 vs. Fig. 6). At last, it is worth675

to note that for the resolved wavenumbers, k∆x <∼ π/3, and after entering into implicit regime,676

∼ 1 < α <∼ 3/3, both the dissipation and the phase delay in Fig. 15 are actually less than in Figs.677

10 and 14 despite the fact that parameter choice in the latter two was motivated solely to delay the678

transition to implicitness as much as possible.679

It is also useful to compare this with using a second-order centered scheme instead of upstream680

for the implicit part [cf., Eq. (3.14) and the paragraph in which it occurred]. The centered-implicit681

scheme is naturally less dissipative, and produces smaller phase delay [cf., Appendix B] than the682

upstream, however to achieve the same degree of damping of the local maximum associated with683

the computational mode of LF-AM3 stepping – keeping |λ|(1/α) just below 0.8 there – one needs to684

choose αmin = 0.6 and αmax = 0.75, which leads a heavier weighing on implicitness under the same685

conditions. The properties of the resulting scheme are shown in Fig. 16. Judging by the dissipation686

and phase errors for the resolved wavenumbers, k∆x < π/2, and Courant numbers entering into687

implicit zone, α > 0.6, the two algorithms remarkable similar. The most significant difference is that688

the centered scheme does not dissipate wavenumbers approaching k∆x → π while not propagation689

them correctly either. The upstream strongly dampens them once Courant number is large enough690

to activate implicitness. This property is desirable. This comparison indicates that selection of the691

upstream scheme for the implicit part motivated by the reasons stated above (monotonicity, diagonal692

dominance) also leads to no loss of accuracy for the resolved wavenumbers, despite having smaller693

order spatial discretization, first vs. second.694

Fig. 17 shows the results for advection of narrow pulse using adaptive scheme for a wide range of695

Courant numbers. The original LF-AM3 algorithm is included for comparison on the left side (only696

for values of α where it is numerically stable), while fully implicit results are shown on the right. With697

our choice of parameters adaptive scheme is identical to LF-AM3 for α ≤ 0.6, while beyond that it698

becomes progressively more dissipative, and, as expected, for the largest values of α the results are699

similar to fully implicit. While the adaptive scheme does not have formally monotonicity property, it700

is sufficiently dissipative to avoid spurious oscillations when the implicit part takes over, while at the701

same time it retains the accuracy of the original explicit step for the range of Courant numbers which702

are resolved in time.703
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LF-AM3 time stepping Adaptively implicit
Backward Euler,
upstream in space

0.1 0.1 0.1

0.4 0.4 0.4

0.5 0.5 0.5

0.6 0.6 0.6

0.7 0.7 0.7

0.8 0.8 0.8

0.9 0.9 0.9

1.0 1.0

1.5 1.5

2.0 2.0

3.0 3.0

4.0 4.0

Fig. 17. Comparison of LF-AM3 algorithm (left column, same as on Fig. 5), adaptively implicit (middle column,
threshold Courant numbers settings αmin = 0.6, αmax = 1.0, same as in Fig. 15), and fully-implicit backward
Euler upstream in space advection (right column). All the conditions are the same as in Fig. 5. Number on the
left of each panel indicates Courant number.

The adaptively implicit algorithm can be combined with semi-Lagrangian advection as well. As-704

suming the same α → α′ + α′′ limiting and splitting (3.17), (3.13), the characteristic equation of the705

adaptive version becomes706 [
1 + α′′

(
1− eik∆x

)]
λ = Λ (α′) (3.21)707

where Λ (α′) is the expression in the r.h.s. of (2.18) with α substituted by α′. The properties of (2.18)708

are shown in Fig. 18 for αmin = 0.6, αmax = 1.0. There is no computational mode, and, in fact, this709

choice of αmin, αmax is not optimal considering semi-Lagrangian advection alone: both parameters can710
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|λ|(1/α) c∗/c(exact)

Fig. 18. Same as two lower panels of Fig. ADPTLambdaFig, but for using semi-Lagrangian explicit part instead
of LF-AM3 stepping.

be increased to some extent. However, in the present versions of ROMS code alternative (including711

semi-Lagrangian) advection schemes are used only for extra tracer fields associated with biological and712

sediment models, but not for temperature and salinity, and definitely not for momentum equations. It713

is structurally too cumbersome to keep a dual set of αmin, αmax in the code, so we restrict ourselves by714

pointing out that the choice of αmin, αmax motivated by LF-AM3 stepping does not face an additional715

stability restriction if some of the tracers use alternative advection schemes.716

3.3 Changes to the code and computational cost717

The adaptive algorithm fits into the existing infrastructure of ROMS code with some changes:718

(i) Computation of sigma-coordinate vertical velocity is combined with computing the 3D advective719

Courant number, limiting algorithm, and splitting procedure, so the outcome is W (e) and W (i)
720

instead of W . Because the inputs for Courant number are the same finite-volume fluxes as for721

the vertical velocity itself, the additional computations are naturally done within the same loops722

resulting in a more efficient code due to avoidance of extra load and store operations, which723

partially offsets the increased count of arithmetic operations;724

(ii) The implicit tri-diagonal solvers for vertical viscosity and diffusion terms are modified to incor-725

porate implicit part of vertical advection: once again, no extra loops have been added;726

(iii) The original ROMS code of SM2005 skips computation of all viscous and diffusive terms (verti-727

cal and lateral) during the predictor stage of its time stepping algorithm for the baroclinic mode728

(thus, keeping only advection, Coriolis, and pressure-gradient terms). The modified code has im-729

plicit vertical solver on both stages, which is unavoidable due to the necessity to include vertical730

advection;731

(iv) Once the above changes were made it was realized that the original code structure for the mo-732

mentum equations consisting of pre step3d, step3d uv, and rhs3d subprograms (with733

the latter involving all computations common for predictor and corrector stages, e.g., advection734

and Coriolis terms) is no longer optimal: while the combined implicit vertical advection-viscosity735

solver has significant commonality between the predictor and corrector stages, the differences are736

too large to use the same code without introducing extra logic or intermediate variables. Instead737
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rhs3d was eliminated as a subprogram, its computations are now inserted directly (via CPP in-738

clude command) into pre step3d and step3d uv where the predictor and corrector versions739

of the implicit solver are done individually and consolidated with other computations – vertical740

integrations associated with mode coupling, implicit bottom drag, etc. – these are the ones which741

cause the differences. As the result no new provisional storage, no extra logic were introduced,742

and the number of 3D-sweeps of storage arrays is kept to the minimum (hence optimal utilization743

of CPU cache). An additional bonus of this approach is the possibility to have different horizontal744

advection schemes for the momentum equations during predictor and corrector stages (4th-order745

centered and 3rd-order upstream respectively) resulting in increase of stability limit relative to746

3rd-order upstream during both stages, Appendix A, Fig. 24.747

(v) The code is instrumented to monitor the largest vertical and horizontal Courant numbers in order748

to provide on-line diagnostics about which one is the most limiting for each particular application749

and to establish numerical safety margins 8 for ∆t settings. This part can be switched off without750

affecting model solution as it is completely outside the model algorithm.751

The overall strategy of ROMS design to keep expensive parameterizations for vertical mixing coeffi-752

cients and lateral mixing terms outside the predictor-corrector algorithm algorithm (thence compute753

them only once per time step) is retained. In practice we observe only negligible increase of CPU time754

needed to complete one time step: no more that 5%, which is well offset by the ability to run the model755

using larger time step.756

4 Computational examples757

4.1 Gravitational adjustment of density front (“lock-exchange” problem)758

To demonstrate viability of the proposed algorithm we present test results from gravitational adjust-759

ment of density front, Fig. 19. The setup is the same as in Ilıcak et al. (2012), which is also a standard760

ROMS test problem, Haidvogel and Beckmann (1999, see Sec. 6.3 there) in its turn inspired by the761

classical work of Benjamin (1968) and early modeling study of Wang (1984). At the initial state the762

basin is divided in two halfs by a vertical diaphragm which separates two uniform water masses, one763

with T = 50C on the left and the other with T = 350C on the right. Thermal expansion coefficient764

(not normalized by density) is 0.2kg/m3/0C, so the density contrast between the halfs is 5kg/m3.765

The length of the domain is 64km, depth is 20m, grid resolution ∆x = 400m, ∆z = 0.5m. The766

vertical-to-horizontal aspect ratios, both ∆z/∆x = 1/800 � 1 and h/∆x = 1/20 � 1, are small,767

which means that this grid does admit nonhydrostatic effects. Nevertheless, this problem is known768

to generate sharp fronts with vertical velocities playing by far the dominant restriction of the size of769

time step allowed by numerical stability. This can be understood from the fact that once sharp front770

propagates horizontally in the bottom half of the water column, so it takes time τ = ∆x/u to cover771

one horizontal grid interval, and water before the front is stagnant, during the same time τ the entire772

grid-box-wide, h/2-deep volume should be uplifted by h/2 to give room for incoming water, hence it773

8 We should emphasize that for the purpose of adaptive control Courant number is 3D Courant number as it is
dictated by the overall budget of numerical stability for advection scheme. This means that the “explicitness”
available for the vertical direction is what is left after it has been “taxed” by the horizontal.
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leads to an estimate774

h/(2w) ∼ ∆x/u or w ∼ u · h/(2∆x) , (4.1)775

which has tendency to increase with∆x→ 0. (In a nonhydrostatic model this tendency will be eventu-776

ally halted because the nonhydrostatic pressure makes water “feel” the approaching front beyond just777

one horizontal grid interval).778

Explicit vertical advection Adaptively implicit Fully implicit

∆t=10

∆t=20

∆t=45

∆t=60

∆t=90 no solution

∆t=120 -

∆t=180 -

∆t=240 -

∆t=360 -

∆t=510 -

Fig. 19. Comparison of lock-exchange test solutions using explicit, adaptively implicit, and fully-implicit vertical
advection algorithms.

Another remark to be made is that while Ilıcak et al. (2012) considers GOLD simulation as the779

“etalon” because the Lagrangian nature of vertical coordinate of this model makes it possible to obtain780

a solution without any numerically induced mixing at all, the hydrostatic posing of the problem makes781

it fundamentally non-convergent because decrease of horizontal grid spacing unavoidably leads to a782

situation when ∆x becomes sufficiently small in comparison with the total depth and the thickness of783

denser fluid at which point the non-hydrostatic effects become resolved. Both laboratory experiments784

Rottman and Simpson (1983, see Fig. 2 there), Lowe et al. (2005, Fig. 10), and theoretical studies785
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Klemp et al. (1994) leading to a refinement of the conceptual model of Benjamin (1968) indicate that786

some mixing of the two fluids is inherent to this phenomenon in the case of small density contrast (e.g.,787

where Boussinesq approximation in valid) due to the formation of the head with significant inertial788

motions in vertical direction (e.g., non-hydrostatic effects) followed by formation of a bore. However,789

the bulk outcome, such as the speed of propagation of the front can still be predicted by hydrostatic790

theory (cf., Birman et al., 2005), perhaps with some closure assumption of how much water should be791

physically mixed.792

The solution (vertical along-channel xz cross-section of temperature field) is shown at 17 hours793

since initialization. This matches Fig. 2 and Fig. 5 from Ilıcak et al. (2012). Explicit solution can794

be obtained for ∆t ≤ 60s, beyond which the code becomes numerically unstable. The adaptively795

implicit algorithm allows dramatic increase of the allowed time step. Unlike Ilıcak et al. (2012) who796

selected a Smolarkiewicz scheme for tracer advection (the best fit for this particular problem, but is too797

diffusive for realistic long-term simulations), we use a third-order upstream scheme in the horizontal,798

and parabolic spline in the vertical (for the explicit part) direction. They also choose to perform their799

tests with ∆t = 1s resulting in vanishingly small CFL, while our goal here is to push it to the limit.800

For the smallest settings of ∆t, adaptive and explicit solutions are identical (which is expected), while801

for the largest ∆t adaptive solution becomes more similar to fully implicit (backward Euler in time,802

upstream in space). Also note the progressive delay in the front propagation for the largest ∆t – neither803

adaptive, nor fully implicit scheme is expected to be accurate at this regime (∆t = 240...510s), but804

still adaptive shows slightly less delay and less mixing.805

4.2 Generation of large vertical velocities by vertical mixing: merging surface and bottom boundary806

layers807

Vertical mixing parameterization schemes are an inherent part of any oceanic model. Normally they808

are physically formulated to act within each vertical column independently, and, with the exception809

of interpolations due to the necessity to bring horizontally staggered variables to a common location,810

these schemes do not imply any horizontal connectivity. This, and the highly nonlinear dynamical811

nature of these parameterizations may potentially create horizontal discontinuities in primary vari-812

ables, and, large vertical velocities as the result of subsequent dynamical adjustment. Here we bring813

an example of such situation.814

The experimental setup here is similar to the standard ROMS upwelling/downwelling test prob-815

lem, except that constant-in-time analytical vertical viscosity/diffusivity profile is replaced with KPP816

boundary layer model, enabling both surface and bottom boundary layers. The model domain is a817

channel with free-slip wall boundaries on north and south sides, with depth raising from 150m to 25m818

toward the walls (see Fig. 20), and is uniform in east-west direction, where periodic boundary condi-819

tion are are assumed. The width of the channel is 80km, f -plane with Coriolis parameter f = 10−4
820

(positive, Northern hemisphere) is assumed. Grid resolution ∆x = ∆y = 500m, resulting in 160 grid821

points across the channel and 48 non-uniformly spaced vertical layers with refinement toward both free822

surface and bottom. The initial condition is rest state (u = v = 0) with horizontally uniform positively823

stratified temperature profile,824

Θ
∣∣∣∣
t=0

= 140C + 40C · tanh
(
z + 35

25

)
+
z + 120

75
. (4.2)825
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An idealized equation of state is assumed with thermal expansion coefficient 0.28kg/ (m3 ·0C). Salin-826

ity is uniform and has no dynamical effect. At time t = 0 wind starts blowing in positive along-channel827

direction, according to828

τx = 0.1
[
N

m2

]
·


sin

(
π

4
· t[days]

)
, t < 2[days]

1 , otherwise ,
(4.3)829

thus, smoothly reaching its full strength after 2 days, and remaining constant thereafter. There is no830

heat forcing at the surface.831

K-Profile Parameterization (KPP) canonically referenced to Large et al. (1994) interprets turbulent832

mixing as a quasi-equilibrium process adapting to forcing conditions (surface wind stress and thermo-833

dynamic fluxes), and relies on bulk Richardson number criterion in determining the extent of boundary834

layer (hence treating the boundary layer as a whole). For our experiments we use an integral criterion835

(Shchepetkin, 2005) with a 3-way weighting procedure for vertical shear of horizontal velocity vs.836

buoyancy stratification vs. Coriolis force. The latter is recognized as a stabilizing factor acting against837

shear, and, in principle, able to balance it alone even in the absence of stratification, resulting in finite838

depth of boundary layer. The neutrally stratified case with neutral buoyancy forcing is tuned to yield839

the correct Ekman depth of 0.7u∗/f as the result of the solution (as opposite to a posteriori imposed840

limit in the original KPP; u∗ is friction velocity associated with surface wind stress forcing). If no841

Coriolis force, the shear vs. positive buoyancy stratification case is tuned to match bulk Richardson842

number criterion for boundary layer thickness. Finally, negative buoyancy forcing in the absence of843

wind and Coriolis produces deepening matching the empirical rule of convection (Eqs. (21), (24), and844

(23) from Large et al., 1994 respectively). If the most general case when all three factors are present,845

their influences are considered in continuously-weighted manner (as opposite to using logical on-and-846

off switches) resulting in mostly “if-less” algorithm. The bottom boundary condition is described in847

Shchepetkin et al. (2009) and the resultant bottom drag drives the bottom boundary layer using similar848

rules with the exception that there is no buoyancy forcing. If the surface and the bottom boundary849

layers overlap, their viscosities/diffusivities are added as850

A =
√
A2

surf + A2
bot (4.4)851

where Asurf , Abot are surface- and bottom-induced turbulent viscosities and diffusivities associated852

with the respective boundary layers. This merging rule is motivated by the fact that853

A ∼ w∗ · L (4.5)854

where L is length scale and w∗ is turbulent velocity scale, which in its turn is proportional to
√
TKE,855

where TKE is turbulent kinetic energy. When boundary layers merge, their length scales became com-856

mon, while TKEs are added up.857

The results are shown in Fig. 20a, set of 5 panels in upper-left. Soon after the initialization wind858

causes formation of surface Ekman spiral and surface boundary layer, however as the near-surface859

velocity is pushed to the right relative to wind direction (that is to the left on the plot), it is restricted860

by the wall, and immediately produces displacement of free surface resulting in opposing barotropic861

pressure gradient. This causes compensating flow in the water column below, which in its turn interacts862

with the bottom resulting in formation of bottom boundary layer. The compensation flow (most evident863
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a: KPP, surface and bottom c: Av = const, AΘ = 0

b: KPP, no stratification

Fig. 20. Generation of large vertical velocities by
merging surface and bottom boundary layers in wind–
driven upwelling/downwelling problem. Shown on all
panels here are vertical sections in cross-channel di-
rection of the fields indicated under each plot. All
are instantaneous snapshots are taken at t = 8 days
since model initialization. upper-left – a: KPP surface
and bottom boundary layer model with stratified ini-
tial condition; lower-left – b: same as a, but no strati-
fication (temperature is set to uniform Θ = 140C, not
shown); upper-right – c: same as a, but uniform ver-
tical vertical viscosity instead of KPP. Note that only
case a develops flow with large vertical velocities.

on v-panel) is confined to the bottom boundary layer, which is also manifested by “braking” effect864

on u-velocity near the bottom (more detailed examination reveals formation of bottom Ekman spiral865

there) and by erosion of stratification within the bottom layer. With all the parameters specified above866

the surface-layer Ekman depth is estimated as867

0.7u∗/f = 0.7
√
τx/ρ0

/
f = 0.7 ·

√
(0.1N ·m−2)/ (1000 kg ·m−3)

/(
10−4c−1

)
= 70m (4.6)868

and the expected thickness of surface boundary layer should be smaller because it is positively strati-869

fied. The thickness bottom layer is expected to comparable as the bottom stress should be, in principle,870

the same when along-channel flow reaches equilibrium, and less before that. Therefore the two bound-871

ary layers cannot reach each other in the deep part in middle of the channel, however they can do so in872
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the shallow. When this happens, the resultant surface-to-bottom mixing eliminates the remaining strat-873

ification, leaving behind top-to-bottom turbulent Ekman spiral (the left-most portion in the upper-left874

set of panels in Fig. 20). This interacts with the adjacent areas where boundary layers did not merge875

yet, and the discontinuities in u and v form large vertical velocities. To a large extent this front acts like876

a wall causing downward flow necessary to close the circulation, but it also generates internal waves877

due to loss of nearly geostrophic balance by sudden mixing effect. Merging of boundary layers also878

occurs on upwelling side of the channel, but vertical velocities there a weaker and occur at later time.879

This mechanism of generating large vertical velocities is nonlinear, and fundamentally relies on both880

dynamical feedback of influence of stratification onto boundary layers and vice versa. Thus, the loss of881

stratification by itself in not sufficient. Fig. 20b presents the same experiment, but with non-stratified882

setup. In this case very soon after initialization an equilibrium Ekman flow is formed. Vertical veloci-883

ties are very weak, despite the fact that boundary layers do merge and there are places with sufficiently884

sharp contrast in vertical viscosity in horizontal direction. In the opposite case, Fig. 20c there is strat-885

ification, but the dynamical feedback of the flow and stratification onto vertical viscosity/diffusivity886

is eliminated – a constant value is used instead of KPP. There is upwelling with incline of thermo-887

cline comparable to the case a and also there is formation of non-stratified region on the downwelling888

side. However vertical remains very small. In all three cases we use time step dt = 450s with ver-889

tical Courant numbers exceeding 1 in the case a, where, obviously, adaptively-implicit algorithm is890

essential 9 . In the other two cases, b,c, the threshold for implicitness was never reached.891

4.3 Pacific Ocean model892

An example for eddy-permitting resolution modeling is a 0.22-degree North-Equatorial Pacific893

model. The entire domain covers from 480S to 650N and from 990E to 2900E with isotropic grid894

resolution, ∆x = ∆y ∼ 21km on the Equator to 10km at the extreme north of the grid. This is895

a limited-area configuration with open boundaries on the southern and western sides. The boundary896

forcing data was derived from SODA Ocean Climate Reanalysis (Carton and Giese, 2008) and applied897

via off-line nesting procedure (Mason et al., 2010). The model is forced by winds and thermodynamic898

fluxes derived from NCEP2 reanalysis (Kanamitsu et al., 2002) (in some runs wind stresses are substi-899

tuted by ERA-40 (Uppala et al., 2005) available via SODA solution). Only a portion, 120S to 420N and900

1050E to 1600E, of the entire model domain (approximately 1/3 in east-west and 1/2 in north-south901

direction) in the western part is shown in Fig. 21. Shown on the two right panels are the vertical max-902

ima of horizontal, cx, and vertical (in sigma-coordinate sense), cw, Courant numbers: these two are903

computed separately by keeping only U, V - terms in (3.7), and, conversely, by keeping only W at each904

grid point, and then take maximum value over each vertical column. All the fields are instantaneous.905

The square pixels on each panel correspond to the actual model grid boxes – there is no interpolation906

or post processing of any kind.907

Time step is ∆t = 2250 s in this simulation, which results in horizontal Courant number staying908

well within the safe range of α ≤ 0.5 (in fact, the color scale on the upper right panel goes up to909

0.25, however the extreme values in the panel go slightly beyond that, αmax ∼ 0.3, where the red910

9 It should be noted that the perfect uniformity in along-channel direction for this setup makes it effectively
two-dimensional in cross-channel vertical plane. As the result, horizontal Courant number due to u-velocity
alone reaches 0.9, however u-velocity does not affect the numerical stability at all.
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color changes toward more white-orange. In contrast, spatial distribution of maximum vertical Courant911

number is very different. Note that both right panels use the same color scheme, but in the case of cw912

the color map is stretched to highlight the contrast for small values. So everything which is blue to913

green corresponds to very small values, and, in fact, cw is small everywhere, expect just in a few914

“hot” spots. At such resolution the correlation between large values of cx and cw is not simple (as the915

Fig. 21. Model topography (above), maximum values
over each vertical column of horizontal, cx (top right),
and vertical cw (bottom right), Courant numbers from a
0.22-degree resolution Pacific model simulation. Only
part of the model domain covering the entire North-E-
quatorial Pacific is shown. The intense eddies on cx
plot appear as quadrupolar rather than circular patterns
because cx ∼ |u| + |v| rather than

√
u2 + v2. Note

stretched colorbar for cw field: in fact only a handful of
model grid points (appearing on this plot in red) ever
need implicit treatment of vertical advection.
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extreme values of cw do not necessarily occur where currents are the strongest), however it is clear that916

topographic slopes play a major role. The largest values of cw occur intermittently (not always present917

in specific place and any time), however they are generally bound to appear only within the specific918

places in the grid. We estimate gain in computational efficiency of a factor of 1.5 or more (but within919

2) relative to the fully explicit code. Most importantly the use of vertically adaptive advection makes920

this simulation to be very robust, as it relieves from the necessity to keep safety margin in ∆t setting921

as vertical velocities are hard to predict a priori, so in practice one has to make several trial simulations922

before deciding it.923

4.4 Palos Verdes Configuration924

An example of very fine resolution ROMS configuration is Palos Verdes domain, Fig. 22. The925

physical size of the model domain is 120 × 45km in along-shore and offshore directions, adjacent to926

general Los Angeles area and oriented north-west – south-east. Horizontal grid spacing is only 75m.927

Land mask is shown in gray color, the peninsula in the middle is Palos Verdes, left from it is Santa928

Monica Bay (with Marina del Ray visible as carved area into the mask; also identifiable along the929

coastline are port of Los Angeles on the right edge of peninsula, and Newport Beach marina). This930

particular domain is the innermost member of the 4-level set of one-way nested domains (hence it is931

designated as PVL4 domain) set up by Yusuke Uchiyama with the intent do fine-resolution studies of932

coastal response to wind bursts. The outer domains are ∆x = 250m, 750m covering progressively933

larger areas, and finally 2.5km US West Coast configuration. Off-line nesting technique (Mason et al.,934

2010) is applied, with the exception that the L2 domain also receives tidal forcing. The PVL4 grid has935

1600×600×32 points. The maximum depth in this area is only 900m. The minimum is restricted to 2m.936

There is no wetting and drying (as there are no tidal flats in in this area), however tidal amplitudes may937

achieve a substantial fraction of this minimum depth. It is forced by WRF modeled winds (atmospheric938

model ∆x = 6km specifically computed for this purpose.)939

The primary computational challenge in this configuration is the combination of very high inter-940

mittency of wind and tidal forcing (the latter are due to spring tides, where lunar and solar components941

are in phase), fully-developed bottom boundary layer (which may merge with the upper boundary942

layer resulting in vanishing stratification in the entire water column), also constriction of the tidally943

generated flows by man-made obstacles (water breakers).944

Time step∆t = 28.8s with 60 barotropic steps during each baroclinic using the adaptively-implicit945

vertical advection with parabolic splines for the explicit part for both momentum and tracer equations.946

This is nearly the maximum ∆t for which we were able to run this simulation (it subject to the re-947

striction of divisibility of time interval between the outputs by integer number of time steps, 2 hours948

and 250 respectively). Slightly larger settings, ∆t = 30s and 32s, are possible, but require tedious949

babysitting because the wind forcing for configuration is characterized by large temporal variation in950

strength so completion of a substantial portion of the run at a certain ∆t setting does not always guar-951

antee numerical stability for the entire duration. A fully-explicit code runs for ∆t up to 20s, but only if952

vertical splines are replaced with fourth-order scheme with harmonic averaging of consecutive differ-953

ences (Shchepetkin and McWilliams, 2003, Sec. 4, Eqs.(4.9)-(4.12)), known in ROMS community as954

AKIMA advection. Switching to splines forces further reduction of time step to ∆t =∼ 17...18s. This955

can be explained be the fact, that, while it is nonlinear, in the case of monotonic profile of the advected956

field AKIMA becomes similar to the conventional 4th-order finite-difference scheme, and therefore957
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Fig. 22. US West Coast Palos Verdes Level 4 (PVL4) configuration. Model topography (top panel), maximum
values over each vertical column of horizontal, cx (middle), and vertical, cw, (bottom panel) Courant numbers.
Grid resolution is ∆x = 75m, 1600×600×32 points. The entire domain is shown. Maximum depth within the
domain is 900m, minimum is only 2m. This solution was obtained using WRF-modeled winds and thermody-
namic fluxes (atmospheric model resolution ∆x = 6km) and it is tidally forced. Note stretched colorbar of cw –
vertical Courant numbers are actually very small everywhere except within the frontal structures. The maximum
cw in this Fig. occurs near the south-western tip of PV peninsula.

its dispersion curve (Fig. 1) has lower maximum value than that of compact differencing, resulting958

in larger stability limit if the same time stepping algorithm is used. On the other hand, stability of959

adaptively implicit code is virtually insensitive to the choice between splines and AKIMA.960
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Fig. 23. An enlarged central portion of the previous figure. All fields, value ranges, and color schemes are
the same. The square pixels of these plots correspond to the actual grid boxes of the model grid – there is no
interpolation, averaging, or post-processing of any kind. The maximum measured value of cw in this snapshot is
1.328 occurring within the curved frontal structure off the south-western shore of PV peninsula.

Shown on the two lower panels Fig. 22 are water-column maxima of horizontal and vertical Courant961

numbers (defined similarly to that on Fig. 21) during a wind burst effect. All the fields are instantaneous962

at a moment selected when the model reports large vertical Courant number. Note that similarly to Fig.963

21 the color bar for cw is stretched. Once again, the values of vertical Courant numbers are very small964

everywhere except occasionally within the frontal structures, which are generated by the inherent965

ocean dynamics – it should be noted that the surface forcing fields are very smooth relative to the966

resolution of this oceanic grid. Unlike in the Pacific model, occurrences of extreme values of cw are967

not topographically locked (although, obviously, topography plays role), but are mainly event driven.968
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In this particular snapshot the location of extreme value of cw was traced back to the event near south-969

western tip of PV peninsula, and shown in more detail in Fig. 23. The flow is predominantly wind970

driven and is moving from the right to the left passing the tip of PV peninsula at which point it971

separates, leaving a nearly stagnant “shadow” area between the coast and the separated flow. This972

situation forces coastal upwelling in the area, resulting in sharp horizontal contrast in density field at973

the front, which eventually leads to large vertical velocity, and the extreme of vertical Courant number974

way beyond the the limit of what can be handled by the explicit code.975

5 Conclusion976

Using implicit algorithms is common for diffusive processes, however they are rarely selected for977

advection. The explanation of this comes from realization that viscous and diffusive processes often978

lead to a situation where the solution adapts to external conditions (through forcing, or boundaries other979

terms in equations) which results in an equilibrium, so the time evolution is slow in comparison with980

the time interval needed to establish the equilibrium. Advection is different in principle the underlying981

process is propagation, hence accurate modeling requires resolving it in time, so the time step size982

must be chosen to be sufficiently small to allow meaningful representation of the phase changes of the983

highest wavenumber admitted by the computational grid. This translates into staying within c∆t/∆x <984

1.985

Explicit advection algorithms can be designed in such a way that using them in the computational986

regime close to the largest possible time step allowed by numerical stability does not compromise987

the accuracy of the solution. Implicit algorithms promise to circumvent the CFL limitation, however988

their drawbacks are two fold: at first, if used in the c∆t/∆x > 1 regime, the Courant number itself989

also sets the fundamental limitation on the largest spatial wavenumber which can be propagated with990

the proper phase speed. Secondly, Dahlquist (1963) set a fundamental limitation that any linear (with991

constant coefficient) implicit method capable of unconditional stability is limited to at most second-992

order temporal accuracy – a Crank-Nicholson step over one or more ∆t-intervals is the only option993

for the second-order accuracy, while modifying it by placing more weight onto the new-time-step994

r.h.s. terms changes it into θ-method, which is formally only first-order accurate – if used within995

c∆t/∆x ∼ 1/2, neither option yields numerical accuracy to comparable that of to the best explicit996

schemes.997

Adaptive implicit advection proposed in this article designed as an extension to the explicit, where998

weighting between the explicit and the implicit parts adjusts automatically to local flow condition999

based on Courant number, thus in goes beyond the class of constant-coefficient time stepping algo-1000

rithms, allowing it to circumvent the Dahlquist (1963) limitation. For small Courant numbers and up1001

to the useful portion of the stability range of the explicit part of the overall algorithm the accuracy is1002

fully retained without any compromise at all. Implicitness activates itself only where and when it is1003

necessary in a seamless manner by smoothly changing toward being more and more implicit. The im-1004

plicit part is deliberately designed to have dissipatively-dominant truncation error - primarily to avoid1005

dispersive ripples, which may be detected as negative stratification and interfere with vertical mixing1006

parameterization in a non-controllable way.1007

The motivation, and, in fact justification, of such approach comes from the observation that in1008

practical oceanic modeling results using ROMS code vertical velocities and vertical Courant numbers1009
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are generally very small almost everywhere throughout the computational domain, except in just a tiny1010

fraction of it, sometimes few dozen grid points, where the extreme values are triggered by either loss1011

of stratification due to local overturning, mixing events, propagation gravity fronts in density fields,1012

specific topographic places causing focusing and trapping of vertical motions, internal wave breaking,1013

tidally-induced mixing in shallow areas, etc – all of which are characterized by strong vertical mixing,1014

and where the elevated numerical dissipation due to the advection scheme is acceptable.1015

The practical benefit of the adaptive algorithm is the ability to run model with a substantially1016

larger time step without compromising numerical quality of the solution. The gains are application1017

dependent, primarily sensitive to roughness of bottom topography and intensity of the flow. Typically1018

we observe increasing ratios of time steps allowed by the adaptive code and its explicit prototype when1019

going to finer horizontal resolutions, with exceeding a factor of 3 for a ∆x ∼ 750m inner Gulf Stream1020

nest model practically observed. They are more modest for US West Coast configurations (traditional1021

for UCLA ROMS), where currents are generally weaker and internal wave phase speed is typically the1022

most limited. This situation, however, changes with the inclusion of tides.1023
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Appendix A: Finite Courant number behavior of some of the commonly used advection schemes1029

Fourth-order centered finite-difference in space with LF-AM3 time stepping: the algorithm essentially re-1030

peats (2.6)-(2.7) except that midpoint values q̃j+1/2 are computed as1031

q̃j+1/2 = − 1

12
qj−1 +

7

12
qj +

7

12
qj+1 −

1

12
qj+2 (A.1)1032

instead of parabolic spline interpolation (2.5). The corresponding finite-difference approximation for the first1033

derivative1034
q̃j+1/2 − q̃j+1/2

∆x
=
−qj+2 + 8qj+1 − 8qj−1 + qj−2

12∆x
(A.2)1035

has Fourier image1036

iK∆x =
4

3
i sin(k∆x)− 1

6
i sin(2k∆x) = ik∆x− i(k∆x)5

30
+ ... (A.3)1037

which indicates the fourth-order spatial accuracy. The function K (k)∆x =
4

3
sin(k∆x)− 1

6
sin(2k∆x) reaches1038

its maximum value of K∆x =

√√
6− 3/2 · (1 + 1/

√
6) ≈ 1.37222197 when k∆x = acos

(
1−

√
3/2

)
≈1039

0.57215487 · π. This maximum value is smaller and is on the left from the corresponding K∆x =
√

3 at1040

k∆x = 2π/3 for the 4th-order accurate Padè derivative on Fig. 1.1041

The characteristic equation is essentially the same as (2.14) except that iK∆x now has different meaning,1042

however it is still purely imaginary. There are two characteristic roots, one for the physical mode and the other1043

one is for computational. The upper row on Fig. 24 shows dissipation per 1∆x travel and numerical to ideal1044

phase speed ratio for this algorithm in the same format as the corresponding panels on Fig. 2. Qualitatively both1045

|lambda|(1/α) and c∗/c(exact) are very similar for both algorithms, however Fig. 24 has noticeable narrower1046
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region where the phase speed ratio falls within the range of 1± 0.005 which is explained by a larger truncation1047

error of (A.3) vs. (2.13). Fig. 24 also has slightly larger stability limit and smaller dissipation, both of which are1048

due to lower maximum value of K∆x = K∆x(k∆x) for the finite difference scheme.1049
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Fig. 24. Dissipation per 1∆x travel, |λ|(1/α) (left column), and numerical to ideal phase speed ratio, c∗/c(exact)

(right), for advection algorithm using LF-AM3 time stepping combined with 4th-order centered (A.1) and/or
third-order upstream-biased (A.4) discretization in space: upper row – centered for both predictor and cor-
rector stages; medium row – centered for predictor stage, upstream for corrector; bottom row – upstream for
both stages. Note that stability ranges are smaller for both cases involving the use of upstream-biased scheme
(αmax ≈ 1.156, 1.003, 0.861, top to bottom respectively), and in comparison with the centered case, k∆x for
which instability occurs first is shifted toward the higher wavenumbers beyond k∆x of the maximum on the
corresponding dispersive curve in Fig. 1 (k∆x ≈ 0.572π, 0.685π, 0.795π respectively).

Another widely adopted scheme is the third-order upstream-biased. It used an asymmetric stencil to compute1050

the mid-point value q̃j+1/21051

q̃j+1/2 = −1

6
qj−1 +

5

6
qj +

1

3
qj+1 (A.4)1052

in such a way that it uses one more point on the upstream side (i.e., the above formula is for positive advecting1053

velocity; for negative it should involve qj+2 instead of qj−1). The approximation for the first derivative1054

q̃j+1/2 − q̃j−1/2

∆x
=

2qj+1 + 3qj − 6qj−1 + qj−2

6∆x
(A.5)1055
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has Fourier image1056

iK∆x =
4

3
i sin(k∆x)− 1

6
i sin(2k∆x) +

1

2
− 2

3
cos(k∆x) +

1

6
cos(2k∆x)

= i sin(k∆x) ·
(

1 +
1− cos(k∆x)

3

)
+

(
1− cos(k∆x)

)2
3

= ik∆x+
(k∆x)4

12
− i(k∆x)5

30
+ ...

(A.6)1057

which, unlike (A.3) is no longer purely imaginary. The −(k∆x)4/12 term introduces numerical dissipation of1058

hyperdiffusive type, which is present even for infinitely small Courant numbers. There are two variants: either1059

the upstream-biased scheme is only used during the corrector stage of LF-AM3 step, while the centered is used1060

for predictor, or the upstream is used for both. Their properties are shown on the middle and lower rows of1061

Fig. 24. The two variants are virtually indistinguishable within the resolved portions (k∆x < π/4, α < 1) of1062

the (k∆x, α)-plane, however the use of upstream-biased scheme during corrector stage only results in a larger1063

stability limit (note that the use of of upstream-biased scheme leads to some decrease of the stability limit in1064

comparison with the centered-only scheme in both cases, but it is more pronounced in the second), and somewhat1065

decrease of phase error, which now has tendency to decrease with increase of Courant number.1066

QUICKEST semi-Lagrangian advection algorithm of Leonard (1979) interprets the given discrete values qj1067

as grid-box averages (rather than instantaneous values at points xj) and uses parabolic reconstruction of the1068

advected field within each cell1069

q(x′) = qj +
qj+1 − qj−1

2∆x
· x′ + 1

2
· qj+1 − 2qj + qj−1

∆x2
·
(
x′

2 − ∆x2

12

)
(A.7)1070

where x′ is a local coordinate defined within each cell, −∆x/2 ≤ x′ ≤ +∆x/2. The parabola is constructed in1071

such a way that its integral within the cell matches its given value,1072

1

∆x

+∆x/2∫
−∆x/2

q(x′) dx′ = qj , (A.8)1073

and its first and second derivatives match the corresponding finite-difference approximations based on the neigh-1074

boring discrete values. The finite-volume flux going from cell j into cell j + 1 (assuming that the advecting1075

velocity c is positive) is the computed as1076

Fj+1/2 =

+∆x/2∫
+∆x/2−c∆t

q(x′) dx′ = c∆t

{
qj +

q+1 − qj−1

4
(1− α) + (q+1 − 2qj + qj−1)

[
1

12
− α

4
+
α2

6

]}
(A.9)1077

where α = c∆t/∆x. The updated values are than1078

qn+1
j = qnj −

[
Fnj+1/2 − F

n
j−1/2

]
/∆x . (A.10)1079

Note that unlike (2.8) the above expression for Fj+1/2 does not imply computing the interface values q̃j+1/2 first.1080

In fact, the interface values are not even uniquely defined, as the right and the left side limits of distributions1081

(A.7) from the two adjacent cells are not equal to each other,1082 [
lim

x′→+∆x/2
q(x′)

]
j

6=
[

lim
x′→−∆x/2

q(x′)

]
j+1

. (A.11)1083
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Assuming that qnj is a Fourier component, qnj = λn · eik∆x · j, finding the step multiplier for this algorithm1084

is tedious, but straightforward,1085

λ = 1− α2
(
1− cos(k∆x)

)
− α

(
1− α2

) [1

2
− 2

3
cos(k∆x) +

1

6
cos(2k∆x)

]
−iα sin(k∆x)

[
1 +

1− α2

3

(
1− cos(k∆x)

)]
.

(A.12)1086

Its Taylor expansion in powers of k∆x yields1087

λ = 1− iαk∆x− α2 (k∆x)2

2
+ iα3 (k∆x)3

6
−
(
2α− α2 − 2α3

) (k∆x)4

24
+ iα

(
8

3
− 11

3
α2

)
(k∆x)5

120
+ ...

(A.13)1088

where the terms for powers up to and including (k∆x)3 match the “ideal” multiplier λ = e−iαk∆x. The deviation1089

of (k∆x)4 term from +α4(k∆x)4/24 (in fact, appearance there of powers of α less that the fourth) indicates1090

the dissipative (hyper-diffusive) nature of the leading-order truncation term, which affects the solution even if1091

Courant number α becomes vanishingly small, as it starts with the first power of α.1092

Piecewise Parabolic Method (PPM) (Colella and Woodward, 1984) in another semi-Lagrangian algorithm1093

based on parabolic reconstruction. Leaving its monotonicity limiters aside, it is equivalent to using (2.8) and1094

(2.2), however the interface q̃j+1/2 values are computed via local interpolation (A.1) instead of solving (2.5). Its1095

step multiplier1096

λ = 1− iα
(

1− α

2

(
1− cos(k∆x)

))
· 2 sin

k∆x

2

(
7

6
cos

k∆x

2
− 1

6
cos

3k∆x

2

)
+iα2(3− 2α) sin(k∆x)

[
cos

k∆x

2

(
7

6
cos

k∆x

2
− 1

6
cos

3k∆x

2

)
− 1

]
−α2 sin(k∆x) · sin k∆x

2

(
7

6
cos

k∆x

2
− 1

6
cos

3k∆x

2

)
+α2(3− 2α)

(
1− cos(k∆x)

) [
cos

k∆x

2

(
7

6
cos

k∆x

2
− 1

6
cos

3k∆x

2

)
− 1

]
.

(A.14)1097

Once again, it can be verified that substitution of α = 1 into above turns it into λ = cos(k∆x) − i sin(k∆x),1098

which is the exact value. Its Taylor expansion for small k∆x is1099

λ = 1−iαk∆x−α2 (k∆x)2

2
+iα3 (k∆x)3

6
+α2(2α−1)

(k∆x)4

24
+iα

(
1

90
− α

12
+
α2

24

)
(k∆x)5+... (A.15)1100

to derive which we have used expansions of the common expressions1101

2 sin
k∆x

2

(
7

6
cos

k∆x

2
− 1

6
cos

3k∆x

2

)
= k∆x

[
1− (k∆x)4

90
+ ...

]
cos

k∆x

2

(
7

6
cos

k∆x

2
− 1

6
cos

3k∆x

2

)
− 1 = −(k∆x)2

12

[
1 +

5

12
(k∆x)2 + ...

]
.

(A.16)1102

Eq. (A.15) matches the ideal multiplier e−iαk∆x for up to (k∆x)3-term. The the first mismatch occurs in1103

(k∆x)4, but now the lowest power of α in this term is the second, which is principally different from (A.13),1104

where its starts with the first power of α.1105

The properties of (A.12) and (A.14) are compared on Fig. 25. While the two algorithms are superficially1106

very similar (both semi-Lagrangian, flux-integrated, based on piecewise parabolic reconstruction), and are of1107

the same order of accuracy (the third), their subtle distinctions in their properties may lead to crucial distinctions1108

in the solutions. The leading-order truncation error of PPM is dissipative (hyper-diffusive), however it is Courant1109
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Fig. 25. Dissipation per 1∆x travel, |λ|(1/α) (left column), and numerical to ideal phase speed ratio, c∗/c(exact)

(right), for QUICKEST (upper row) and PPM (bottom) semi-Lagrangian advection algorithms.

number dependent, and numerical dissipation of PPM vanishes when α → 0. QUICKEST dissipation is only1110

weakly dependent of Courant number. The stability limit is αmax = 3/2, however this applies only for the1111

version of PPM with all monotonicity limiters turned off. Once limiters are back on, the stability is guaranteed1112

only until αmax = 1. QUICKEST stability limit is αmax = 1. On the other hand, the dispersive properties of the1113

two schemes are virtually identical to each other, and furthermore, are very similar to LF-AM3 with centered-1114

upstream discretization, see Fig. 24, middle row (Note that all the isolines of c∗/c(exact) approach k∆x axis at1115

exactly the same locations). The bottom row of Fig. 25 is qualitatively similar to that of Fig. 4, however spline1116

reconstruction leads to a smaller leading-order truncation error of spatial discretization, so the contour-free area1117

on the left portion of both lower panels on Fig. 4 is substantially wider than on Fig. 25.1118

Appendix B: Maximum phase increments per time step for common implicit advection schemes1119

Backward Euler in time, centered in space algorithm,1120

qn+1
j − qnj
∆t

+ c
qn+1
j+1 − q

n+1
j−1

2∆x
= 0 , (B.1)1121

after substituting Fourier component qnj = q̃ · λn · eik∆x yields step multiplier1122

λ =
1

1 + iα sin ξ
=

1− iα sin ξ

1 + α2 sin2 ξ
(B.2)1123

where we have introduced α = c∆t/∆x is Courant number and ξ = k∆x is wavenumber normalized by grid1124

interval. The ratio of imaginary to real parts of λ yields tangent of the phase increment,1125

tanφ =
α sin ξ

1
. (B.3)1126
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Ideally φ(exact) = ω∆t, where ω = ck, hence φ(exact) = ck∆t = k∆x · c∆t/∆x = αξ, so the above1127

is numerically consistent with the desired value, since both sin ξ ∼ ξ when ξ → 0 and tanφ ∼ φ when1128

φ → 0. However, departure from both infinitely small wavenumber and from infinitely small Courant number1129

results in smaller-than-ideal phase increment for both these reasons. Since 0 ≤ k∆x ≤ π, so sin ξ reaches its1130

maximum value when ξ = π/2, which corresponds to 4∆x-waves. This means that the phase increment for any1131

wavenumber and Courant number is bounded by 0 ≤ φ ≤ π/2 regardless of how large is the value of α.1132

Backward Euler in time, upstream in space,1133

qn+1
j − qnj
∆t

+ c
qn+1
j − qn+1

j−1

∆x
= 0 , (B.4)1134

has step multiplier,1135

λ =
1

1 + iα (1− e−iξ)
=

1 + α(1− cos ξ)− iα sin ξ

1 + 2α(1 + α)(1− cos ξ)
, (B.5)1136

which phase increment is1137

tanφ =
α sin ξ

1 + α(1− cos ξ)
. (B.6)1138

For each given α this function reaches its maximum value if cos ξ = α/(1 + α) resulting in1139

max[tanφ] =
α√

1 + 2α

↗
↘

1/
√

2 , α→ +∞

α , α→ 0
(B.7)1140

which bounds φ as1141

0 ≤ φ < atan
(

1/
√

2
)
≈ 0.195913276 · π . (B.8)1142

This is narrower than similar range for (B.3), and the maximum phase increment occurs for a smaller wavenum-1143

ber, k∆x = acos
(
α/(1 + α)

)
instead of π/2.1144

Appendix C: Two-dimensional stability analysis of one-dimensionally implicit adaptive algorithm1145

One potential concern about the one-dimensional analysis of the adaptively implicit algorithm in Sec. 3.2 is1146

that does not cover the possibility of numerical instability of essentially a flux-splitting type (cf., Leonard et al.,1147

1996) associated with simultaneous application of advective fluxes computed one-dimensionally, separately1148

in each direction, and using different mathematical expressions. This applies to the selection of upstream vs.1149

centered scheme for the implicit part as well as the use of 3rd-order upstream-biased scheme in two horizontal1150

directions, while reverting to centered in vertical. Here we explore these issues.1151

The two-dimensional analog of (3.15)-(3.16) is1152

q
n+1/2
j,l =

(
1

2
− 2γ

)
qn−1
j,l +

(
1

2
+ 2γ

)
qnj,l − (1− 2γ)

[
α′
(
q̃nj+1/2,l − q̃

n
j−1/2,l

)
+α′′

(
q
n+1/2
j,l − qn+1/2

j−1,l

)
+ β

(
q̃nj,l+1/2 − q̃

n
j,l−1/2

)] (C.1)1153

and1154

qn+1
j,l = qnj,l − α′

(
q̃
n+1/2
j+1/2,l − q̃

n+1/2
j−1/2,l

)
− α′′

(
qn+1
j,l − q

n+1
j−1,l

)
− β

(
q̃
n+1/2
j,l+1/2 − q̃

n+1/2
j,l−1/2

)
, (C.2)1155

where all symbols are the same as in (3.15)-(3.16), with the newly appearing β is the Courant number in the1156

transversal direction (corresponding to the second spatial index l acquired by qj,l),1157

α = α′ + α′′ = cx∆t/∆x β = cy∆t/∆y (C.3)1158
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As in the case of (3.18), Fourier transform maps the finite difference expressions above into1159

q̃j+1/2,l − q̃j−1/2,l = iK∆x · q̂k,m · eik∆xj+im∆yl

q̃j,l+1/2 − q̃j,l−1/2 =
(
iM∆y + N∆y4

)
· q̂k,m · eik∆xj+im∆yl

qj,l − qj−1,l =
(
1− e−ik∆x

)
· q̂k,m · eik∆xj+im∆yl ,

(C.4)1160

where k = (k,m) is two-dimensional wavenumber; iM∆y + N∆y4 correspond respectively to the imaginary1161

and real parts of iK∆x from (A.6) in the case when of 3rd-order upstream-biased scheme, or the same iM∆y1162

but N ≡ 0 in the case of 4th-order centered. A Fourier transform (C.1)-(C.2) become1163 [
1 + α′′

(
1− eik∆x

)
(1− 2γ)

]
︸ ︷︷ ︸

[ 1 ]

q̂
n+1/2
k =

(
1

2
− 2γ

)
q̂n−1
k +

(
1

2
+ 2γ

)
q̂nk

− (1− 2γ) [iα′K∆x+ iβM∆y] q̂nk

(C.5)1164

1165 [
1 + α′′

(
1− eik∆x

)]
︸ ︷︷ ︸

[ 2 ]

q̂n+1
k = q̂nk −

[
iα′K∆x+ iβM∆y + βN∆y4

]
q̂
n+1/2
k , (C.6)1166

where [ 1 ] and [ 2 ] are simply shorthands for the respective expressions in square brackets. Note that the r.h.s.1167

of the second equation contains βN∆y4 while there is no such term in the first equation. This is because the 3rd-1168

order upstream-biased advection is used during corrector stage only – 4th-order centered is used instead during1169

predictor. There is an advantage in this selection resulting in a larger stability limit and more uniform numerical1170

dissipation with respect value of Courant number β (as discussed in Appendix A, Fig. 24). If both stages use the1171

same advection scheme (upstream or centered), the the expressions βN∆y4 be present or absent in r.h.ss of both1172

equations accordingly. Another variation of the adaptive algorithm is the use of 2nd-order centered differencing1173

instead of upstream for the implicit α′′ terms, hence1174

qj+1,l − qj−1,l

2
= i sin(k∆x) · q̂k,m · eik∆xj+im∆yl , (C.7)1175

in place of the last line of (C.4), resulting in1176

[ 1 ] =
[
1 + iα′′i sin(k∆x) · (1− 2γ)

]
and [ 2 ] =

[
1 + iα′′i sin(k∆x)

]
(C.8)1177

respectively.1178

Using (C.5) to eliminate q̂n+1/2
k from (C.6) and substituting q̂nk = λneik·x leads to the characteristic equation1179

[ 2 ] · λ = 1 − iα
′K∆x+ iβM∆y + βN∆y4

[ 1 ]
·
[(

1

2
+ 2γ

)
− (1− 2γ)

(
iα′K∆x+ iβM∆y

)]
− iα

′K∆x+ iβM∆y + βN∆y4

[ 1 ]
·
(

1

2
− 2γ

)
· λ−1 .

(C.9)1180

This is structurally similar to (3.19), especially in the case of when centered differencing is used for the explicit1181

part during both predictor and corrector: βN∆y4 term vanishes leaving iα′K∆x+ iβM∆y pure imaginary as1182

iα′K∆x in (3.19). In this case, in comparison with its one-dimensional counterpart, now α′ should be limited in1183

such a way that the sum α′+εβ should not exceed the desired αmax. [Here ε = max{M∆y}/max{K ∆x} ∼ 11184

is a multiplier to account for the different possible maximum values of M∆y and K ∆x due to the use of1185

different algorithms in each direction.] This parallels and, in fact, explains the subtraction of horizontal Courant1186

number α⊥i,j,k from αmax before applying it to limit vertical velocity in (3.8) and (3.11).1187
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β = 0, m∆y = 0.683π β = 0.1, m∆y = 0.683π β = 0.2, m∆y = 0.683π

β = 0.5, m∆y = 0.683π β = 0.7, m∆y = 0.683π β = 0.8, m∆y = 0.683π

β = 0.85, m∆y = 0.683π β = 0.9, m∆y = 0.683π β = 0.95, m∆y = 0.683π

Fig. 26. Amplification per 1∆x travel |λ|(1/α) for characteristic equation (C.9) plotted on (k∆x, α)-plane for
different values of the “horizontal” Courant number β, a single given wavenumber in horizontal direction
m∆y = 0.683π which becomes unstable first once β exceeds its maximum allowed value, and using third-order
upstream-biased advection in horizontal direction (corrector stage only, cf. Fig. 24, middle row). The first panel,
β = 0, is identical to Fig. 15, lower-left, which is expected because the threshold values of the limiting algorithm
αmax = 0.6 and αmax = 1 are the same in both cases.

In the case of third-order upstream biased scheme, hence N∆y4 6= 0, the stability analysis of (C.9) can no1188

longer be reduced to 1D-case of (3.19), and is therefore more complicated as the (k∆x, α)-parameter space now1189

becomes essentially a 4-dimensional one, (k∆x, α,m∆y, β). To reduce we note that it is sufficient to consider1190

only horizontal wavenumber m∆y which becomes unstable first as β increases – it is expected to be in the1191

vicinity of m∆y ∼ 0.6 and β ∼ 0.9 as follows from Fig. 24, middle left. So by varying β and m∆y in the1192

vicinity of these values, we find that the instability occurs first when m∆y ≈ (0.683± 0.0005)π and β ≈ 0.92.1193

Then we keep m∆y fixed at this setting, and examine behavior of |λ| as function of (k∆x, α) (covering the1194

entire plane) and slowly varying β within the permissible range. The algorithm is fully-explicit in horizontal1195

direction, so β is expected to have an upper limit. Our goal is to verify that in the algorithm does not impose1196

any additional restriction on Courant number α in the second direction, which is treated adaptively, as long as β1197

stays within the allowed range.1198

The results are presented in Fig. 26. Note that the third-order upstream-biased scheme results in a strong1199

damping for high wavenumbers, |λ|(1/α) ∼ 0.5 form∆y = 0.683π, so all the values presented here are expected1200
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to be significantly smaller that unity for this reason alone. The tendency of the local maximum observed in all1201

panels here to become closer and closer to abscissa axis (and narrower as well) with increase of β is due to1202

the property of the limiting algorithm (3.11) with β playing the role of α⊥: the horizontal Courant number is1203

subtracted from the maximum allowed vertical before splitting of vertical velocity, hence the lesser fraction1204

vertical velocity is treated explicitly (it vanishes completely when β = αmax) resulting in a more dissipative1205

algorithm. The property of unconditional stability with respect to α for the entire range of k∆x is therefore1206

confirmed for all β presented in Fig. 26 except β = 0.95 which is beyond the stability limit of horizontal1207

advection. Note that the maximum value within the local maximum near abscissa does not have tendency to1208

grow with increase of β, while instability occurs first for small k∆x and large α, with rather sharp growth of |λ|1209

as β exceeds 0.9.1210

Similar studies can be completed for other possible combinations of horizontal (UP3 = 3rd-order upstream1211

biased; C4 = 4th-order centered) and vertical implicit component (UP1 = upstream; C2 = 2nd-order centered,1212

Eq. (3.14), Fig. 16) schemes. Compact 4th-order scheme is used for vertical explicit component in all cases.1213

Given αmin, αmax, ε one determine the maximum horizontal Courant number βmax and most critical horizontal1214

wavenumber m∆y compare them to their one-dimensional counterparts. Conversely, sensitivity of βmax from ε1215

leads to optimization of the latter: setting smaller value of ε causes increase of the maximum close to horizontal1216

axis in Fig. 26 relative to the other maximum close to vertical axis. The largest possible βmax is achieved when1217

the two maxima reach unity at the same time. Examples of optimized parameters are in the table:1218

Horiz./Impl. vert. αmin αmax ε βmax m∆y

UP3/UP1 0.6 1.0 1.0 0.942 0.683π see Fig. 26

UP3/C2 0.6 0.75 1.0 0.926 0.683π

C4/UP1 0.6 1.0 0.9 1.110 0.573π

C4/C2 0.6 0.75 0.8 1.091 0.573π

1219

Appendix D: Practical algorithm for W →W (e) +W (i) splitting1220

Although the procedure of limiting the explicit part and splitting vertical velocity into W (e) and W (i) can be1221

outlined as the sequence (3.9)→ (3.13)→ (3.11)→ (3.10), its translation into an efficient practical algorithm1222

leaves little visual resemblance with these formulae. Therefore we expose it here in more detail.1223

In the original fully-explicit code computing ofWi,j,k+1/2 consists of two stages: vertical bottom-up integra-1224

tion of the divergence of horizontal fluxes (cf., Eqs. (1.18)-(1.19) from SM2005) followed by a corrective step1225

to account for the fact that vertical velocity in generalized sigma coordinates is defined relatively to the moving1226

grid-box interfaces which follow up-and-down displacement of free surface. The latter step also enforces the1227

exact match in kinematic boundary condition at the surface. The W → W (e) + W (i) splitting procedure is1228

“implanted” into the existing code without adding a single extra do-loop. Thus, the computation of horizontal1229

Courant number (symbol CX(i,k) below) takes place within the first step, while limiting and splitting of full1230

W is combined with the second.1231

Wi(i,j,k) = ... vertical integration of div(U, V )

CX(i, k) = max
(
Ui+1/2,j,k, 0

)
−min

(
Ui−1/2,j,k, 0

)
+max

(
Vi,j+1/2,k, 0

)
−min

(
Vi,j−1/2,k, 0

)
CX(i, 0) = ε ·∆t/∆Ai,j just a conversion factor independent of k
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Wi(i,j,k) = Wi,j,k+1/2 → fully computed W with correct b.c.
if (Wi(i,j,k) > 0) then
c2d=CX(i,k) ; dh=Hi,j,k select values from the grid box above or

else below, upstream from interface Wi,j,k+1/2

c2d=CX(i,k+1) ; dh=Hi,j,k+1

endif
cw max=αmax*dh-c2d*CX(i,0) cw max/dh is the maximum allowed
if (cw max > 0) then vertical Courant number
cw max2=cw max*cw max
cw min=cw max*cmnx ratio
cw=abs(Wi(i,j,k))*CX(i,0) cw/dh is vertical Courant number
if (cw < cw min) then
cff=cw max2 3-way selection, cf., Eq. (3.13)

elseif (cw < cutoff*cw max) then
cff=cw max2 + r4cmx*(cw-cw min)**2

else
cff=cw max*cw

endif

We(i,j,k)=cw max2*Wi(i,j,k)/cff →W
(e)
i,j,k+1/2

Wi(i,j,k)=Wi(i,j,k)-We(i,j,k) →W
(i)
i,j,k+1/2

else
We(i,j,k)=0 Wi(i,j,k) remains unchanged

endif

The italicized symbols, cmnx ratio = αmin/αmax, cutoff = 2− αmin/αmax, r4cmx = 1/(4− 4αmin/αmax),1232

are precomputed constants (via parameter statements) and correspond to the switching threshold values in (3.13).1233

Note that neither Courant number α, nor limiting function f(α, αmax) explicitly appear anywhere in the code.1234

There is only a single division per grid point associated with the entire splitting algorithm. It is logically protected1235

to avoid division by zero: cw max may become non-positive only if the horizontal Courant number becomes1236

too large. In this case vertical advection reverts to implicit backward-Euler time step. Because the horizontal1237

advection algorithm is explicit, its stability limit is not expected to exceed the chosen value of αmax in a sig-1238

nificant manner (if at all) but still this protective logic was found to be useful in some computational examples.1239

Alternatively to selecting vertically upstream value for the horizontal contribution to net Courant number, we1240

also try1241

c2d=max[CX(i,k),CX(i,k+1)] ; dh=min[Hi,j,k, Hi,j,k+1]1242

which is logically more restrictive, but does not lead to a noticeable difference in practice.1243
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